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cation error is chosen as the criterion score. The second model, the bi-
nomial error model, uses the observed score distribution to compute the
regression of true score on observed score. Pass or fail decisions and
true score estimates are based on the results of applying the regression
equation. The third model, the beta-binomial Bayesian model, uses prior
beliefs of expert judges to establish a prior ability distribution. Ob-
served data are combined with the prior distribution to produce a posterior
ability distribution for each observed score. Pass or fail decisions and
true score estimates are based on the posterior distributions.

Critprion-referenced tests can be evaluated by a variety of logical
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domain, the rationale for choosing test items, the purposes of the test,
the leve; of skill chosen to represent adequate skill mastery, and the
expect-- results of administering the test to specified groups of exami-
nees. -!Oescriptive and inferential statistical techniques can empirically
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The comparison of the statistical models indicated relatively few
differences between the models and no evidence that one was better or
worse than others. The comparison data did, however, clearly demonstrate
the importance of a close match between test items and the domain to
which results are to be generalized. When test items did not match the
skill domain, the risk of incorrect classification decisions was high,
the magnitude of the decision errors was not accurately predicted by
statistical considerations, and the true abilities of examinees were
poorly estimated by all of the models. When the items more closely ap-
proximated the domain, the amount of classification error decreased and
became more predictable, and true abilities were more accurately estimated.
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FOREWORD

The research presented in this report was conducted under Project
METTEST (Methodological Issues in Criterion-Referenced Testing), under
the auspices of the Engagement Simulation Technical Area of the Army
Research Institute for the Behavioral and Social Sciences (ARI), and
under Army Project 2Q762722A764. The goal of Project MTTEST has been
to develop quantitative methods for evaluating unit proficiency. The
means for achieving this goal include basic research in test construc-
tion, measurement and decisionmaking models, and computer-programmable
models for large-scale data analysis.

This report uses data from an earlier investigation of the Mili-
tary Police Firearms Qualification Course, described in ARI Technical
Paper 322, to compare the usefulness of several standard statistical
models in evaluating and interpreting criterion-referenced test scores.

Related programs within the technical area have included evalua-
tion of small combat units under simulated battlefield conditions
(REALTRAIN, ARTEP), qualification of tank gunnery crews and revision
of table VIII (IDOC), and combat effectiveness evaluation by group de-
cision making and board-game simulation (COTEAM, or Combat Operations
Training Effectiveness Analysis).

hnical Director
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STATISTICAL MODELS FOR CRITERION-REFERENCED TESTING AND DECISIONMAKING

BRIEF

Requirement:

To describe the operating characteristics of a well-constructed
criterion-referenced performance test and to compare the potential use-
fulness of several statistical models in helping to interpret criterion-
referenced test scores. The models were compared on the basis of the
accuracy of pass/fail decisions which they implied and accuracy of
their estimates of examineess' true scores.

Procedure:

A criterion-referenced performance test of pistol marksmanship, the
Military Police Firearms Qualifications Course (MPFQC), was evaluated on
logical and empirical grounds. The evaluation included description of
the skill domain, rationale for choosing test items, purposes of the
test, level of skill chosen to represent adequate skill mastery, and
expected results of administering the test to specified groups of
examinees. Test scores which military police trainees obtained on the
MPFQC were then used as a data base for comparing three statistical
models: the proportion correct model, the binomial error model, and
the beta-binomial Bayesian model.

Findings:

Descriptive statistics and inferential techniques such as means,
variances, and analysis of variance can empirically confirm or indicate
error in the interpretation of the logical analysis of a criterion-
referenced test. Logical analysis indicated that the MPFQC fulfilled
the requirements for a well-designed criterion-referenced performance
test. Empirical analysis indicated, not the assumed unitary skill
domain, but a two-dimensional domain and suggested that test scores
could be interpreted either in terms of the overall domain or indepen-
dently for each of two subdomains.

Comparison of the statistical models indicated relatively few
practical differences among them and no evidence that one was better or
worse than the others. The comparison data did, however, clearly demon-
strate the importance of a close match between test items and the skill
domain being tested. When test items did not match the domain, the
risk of incorrect classification decisions was high, the size of decision
errors was not accurately predicted statistically, and all the models did
poorly in estimating examinees' true abilities. When the items more
closely approximated the domain, classification error decreased and be-
came more predictable, and true abilities were more accurately estimated.

vii



Utilization of findingst

Decision errors will probably always be a problem when criterion-
referenced tests are administered. The most important action that can
be taken to keep decision error to a reasonable level is to insure that
the test items adequately represent the skill domain they are intended
to measure. If the match between test items and domain is good, then
statistical models can be used along with subjective estimates of the
proportion of masters to nonmasters in the examinee group to estimate
the types and amounts of misclassification error and its impact on
decisionmaking.

viii
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STATISTICAL MODELS FOR CRITERION-REFERENCED TESTING AND DECISIONMAKING

1. INTRODUCTION

The growing acceptance of instructional systems technology and the

widespread use of objectives in education make it critical that measure-

ment techniques responsive to the needs of objectives based instruction

be investigated. The heavy investment in time and money required for

the development of instructional systems does not allow for casual test-

ing programs. Decisions concerning students' abilities, needs, and

advancement opportunities must be based on valid and reliable data.

One attempt to meet the need for a strong measurement component in

instructional systems technology lies in the field of criterion-refer-

enced measurement.

Criterion-referenced measurement provides data which are inter-

preted in terms of examinees' abilities to achieve an objective or to do

a task. Decisions are based on how well they perform. Often the deci-

sion making process will collapse to a simple dichotomy; students pass

or fail, they are masters or nonmasters, they are promoted to the next

unit of instruction or recycled for remedial work.

Unfortunately, even very good criterion-referenced tests are not

error free. Items may not adequately reflect the objectives or tasks

for which criterion-referenced tests are designed, leading to problems

of test validity. Whether or not a test is valid, observed performance

incorporates some degree of error inherent in the measurement process

itself. In order to help Interpret the fallible observed scores,

. j
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2

measurement models are developed to estimate the value of the error free

true score that corresponds to an observed score, to support the deci-

sion making process based on the fallible observed scores directly, or

both. The purpose of this research is to compare several measurement

models that may be applicable to criterion-referenced testing in terms

of the accuracy of their true score estimates and their implications for

dichotomous decision making.

Statement of the Problem

Criterion-referenced tests are designed to provide data to support

decisions relating to a student's ability to perform the tasks de-

scribed by a well defined objective or skill domain. The items included

on criterion-referenced tests are assumed to be relatively homogeneous

with respect to both content and difficulty. Measures of ability

obtained through criterion-referenced testing should be stable and

accuratL. However, the process of measurement involves error. easure-

most models are designed to improve decision making by mathematically

defining the measurement process and by specifying procedures which

allow inferences based on observed data to be made with minimum amounts

of error. The estimates of examinee error free true scores, and, in

ama cases, the decisions that are made concerning examinees' abilities

will very for different measurement models. The purpose of this study

Is to destribe the operating characteristics of one criterion-referenced

test, to compae several measurement models on theoretical and empirical

gromds, snd to suggest guidelines for choosing a model for a given

tentgag situation.

pew
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2. REVIEW OF THE LITERATURE

Criterion-referenced Testing

Definitions

The literature on criterion-referenced testing (CRT) is extensive

and is characterized by a proliferation of definitions. For example,

Donlon (1974) pointed out that by the fall of 1973, over 350 references

were known by the ERIC Center on Tests, Measurement and Evaluation. He

also listed ten alternative terms for score referencing, eight of which

can be interpreted as special cases of criterion-referenced testing.

More recently, Hambleton, Swaminathan, Algina, and Coulson (1978)

noted that the number of references has increased to over 600.

The generally acknowledged first use of the term "criterion-

referenced" is in a 1963 article by Robert Glaser. In that article

Glaser wrote, "Criterion-referenced measures indicate the content of the

behavioral repertory, and the correspondence between what an individual

does and the underlying continuum of achievement" (p.520). The most

important feature of Glaser's definition, that the "content of the

behavioral repertory" is being measured by a criterion-referenced test,

seems to have endured. The major controversy seems to lie in how the

tester insures that a test does relate to the "behavioral repertory",

and in how to interpret the "correspondence between what an individual

does and the underlying continuum of achievement". Thus terms Such as

"content standard score" (Ebel, 1962), "universe-deflned tests"

3
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4

(Rively, Patterson, & Page, 1968), "Domain-referenced test" (Millman,

1973), and "objectives-based tests" (Baker, 1974) have appeared in the

literature in various authors' attempts to make Glaser's basic concep-

tualization more concrete and usable. The most recent work concerning

test specifications is described in papers by Popham k1978) and illman

(1978).

This study is primarily concerned with models for interpreting the

results of criterion-referenced tests for decision making. The author

of each model considered presents a unique definition of a criterion-

referenced test. However, a common characteristic of all the defini-

tions Included In the models, as well as the -alternative terms sug-

gested above, does exist. Davis (1972) has specified this common

characteristic, "In constructing a criterion-referenced test, the

behavior categories that are to be measured must be clearly specified

in a test outline. Items are then devised to test these behaviors"

(p.1). In choosing the items that are to be included in a single test

or subtest, Davis further suggests that they be "homogeneous in the

sense that they test performance on one specific behavior or cluster

of behaviors" (p.12). For purposes of this study,, any test that

satisfies Davis' guidelines will be considered a criterion-referenced

test.

True Score

Interpreting an individual's performance on a CRT in terms of the

tnerlying continuum of achievement presents further problems. Regard-

le. of how carefully a test designer specifies the behavior to be

eberew'e and prepares test item or exercises that correspond to the

Ae;



5

specified behavior, the observed performance is subject to uncertainty.

Thus, some procedure must be available for translating the observed

score into the score that would be obtained were the test free of

measurement error, the true score. The manner in which a particular CRT

model defines or conceptualizes true score forms one important distin-

guishing characteristic of the model.

Roudabush (1974) p'oints out the importance of the definition of

the true score and suggests two models describing the underlying nature

of the attribute being measured by a CRT. "The first assumes an under-

lying all-or-none, dichotomous, 'true' score and the second assumes an

underlying continuous 'true' score" (p.4). The choice of the type of

true score being estimated has important implications for the interpre-

tation of both a given observed score and the nature of the error. For

example, assume that a measurement procedure is developed to assess an

individual's ability to perform a particular task. If an individual

performed the task 100 times, 85 times correctly and 15 times incorrect-

ly, how could these observations be interpreted? If the continuous true

score model is assumed, one might say that the observed score of 85 cor-

rect is an unbiased estimate of an individual's ability characterized by

an expected proportion correct of 0.85 over all possible task adminis-

trations. Depending on distributional assumptions, one could then

calculate the probability of obtaining an observed score of 85 correct

in 100 trials given a true ability of 0.85.

Under the all-or-none true score model an individual can only be a

"true" all correct type or a "true" none correct type. Thus, if an

observed menre of 85 was obtalned, one mlght Infer that the individual

obtaining that score was a "true" all correct type who responded to

*". ,A . < , ....



6

this particular fallible measure with a 15% error rate. Alternatively,

one might infer that the individual was a "true" none correct type who

responded to this particular fallible measure with an 85% luck guess

rate. Under certain distributional assumptions, the probabilities of

a "true" all correct type and a "true" none correct type obtaining a

score of 85 correct out of 100 trials could be calculated.

Three inferences about an individual for whom 85 correct responses

are observed in 100 trials are suggested. The individual could have a

true ability estimated as 0.85; he or she could be a "true" all correct

type who comaitted 15 errors; or he or she could be a "true" none cor-

rect type who made 85 lucky guesses. In this case, the distinction

between the aUl-or-none and the continuous true score models may be

trivial. Unless the measure approaches uselessness, it is highly un-

likely that 85 correct responses in 100 trials would be achieved by a

"true" none correct type. Further, the difference between a "true" all

correct type and a true 0.85 type is marginal and unlikely to be of

Importance except for highly critical tasks, or when an exceptionally

high level of precision is required. However, consider the case of

observing 50 successes in 100 trials. In this case the choice of the

model become critical for any interpretation to be meaningful. A

"true" all correct type who happened to have made 50 errors is quite

different from a "true" 0.50 type. For the "true" all correct inter-

pretation these results describe a rather careless individual who should

be allowed to continue with the next unit of instruction. However,

under the continuous model these results would probably indicate an

ftd£vAa&*al who has not adequately mtered the instruction and who

__ • = . . ... -. , 1 7 .. .
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7

needs considerable remedial work.

Decision Making

Assumptions regarding the nature of true scores along with the

type of measurement procedure used have implications for the calcula-

tion of decision making error. Roudabush (1974) considered four cases:

Case I: a dichotomous measure of a dichotomous true score;

Case II: a pseudo continuous measure of a dichotomous true
score;

Case III: a dichotomous measure of a continuous true score;
and

Case IM: a pseudo continuous measure of a continuous true
score.

For Case I, misclassification errors occur when "true" all correct

types incorrectly respond to the measure, and when "true" none correct

types correctly respond to the measure. The probability of misclassi-

fication can be calculated according to the following equation:

P(m) - P(X-11T-o) + P(X-OT=),

where P(m) is the probability of misclassification, P(X.11T-0) is the

probability that "true" none correct types respond correctly, and

P(X-OIT-I) is the probability that "true" all correct types respond

incorrectly.

For Case II a complication arises. The pseudo continuous nature

of the measure Implies that scores may take values from 0 to n, where n

is the maximum possible score. Therefore, a score between 0 and n must

be defined as the minimum observed score required for an individual to

"pass". Common values for the minimum score, which will be referred to

as the criterion score, X0 , are the nearest integer value corresponding

to 0.80n, 0.85n, or 0.90n. Misclassification errors under Case 11 can

. . . . . . . .. . ....

. |~~ ,!=a



8

occur when "true" all correct types obtain a score below the criterion

score. The equation for calculating the probability of misclassifica-

tion is

P(M) - P(x >XJCTmO) + P(x<x CIT- 1),

where P(m) is the probability of misclassification, P(X>XcIT-O) is the

probability that "true" none correct types obtain a score at or above

the criterion score, and P(X<XcIT-l) is the probability that "true" all

correct types obtain a score below the criterion score.

Cases III and IV require that a criterion true ability be defined.

The criterion true ability may be thought of as the minimum true abil-

ity required for an individual to be considered capable. The criterion

true ability will be denoted A. Case III applies to a dichotomous

measure of a continuous true score. Misclassification errors occur when

Iadividuals of ability greater than or equal to the criterion true

ability incorrectly respond to the measure and when individuals of

ability below the criterion true ability respond correctly. The proba-

bility of misclassification is

P(m) - P(X-I1T<A) + P(X-0IT__A),

where P(m) is the probability of misclassification, P(X-ljT<A) is the

probability that individuals of true ability below the criterion true

ability respond correctly, and P(X-OIT>A) is the probability that

Individuals of true ability at or above the criterion true ability

respond Incorrectly.

Case IV is the most conplex of the situations discussed. It calls

for the definition of both a criterion true ability and a criterion

score. Misclassification errors occur when Individuals of true ability

-7: 70
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at or above the criterion true ability obtain observed scores below the

criterion score and when individuals of true ability below the criterion

ability obtain scores at or above the criterion score. The probability

of misclassification is

P(m) - P( cJ IT<A) + P(X<XcITA),

where P(m) is the probability of misclassification, P(X>=XcIT<A) is the

probability that individuals of true ability below the criterion true

ability obtain scores at or above the criterion score, and P(X<Xc T>A)

is the probability that individuals of ability at or above the crite-

rion true ability obtain scores below the criterion score.

The value of P(m) will vary depending on which case applies. Thus

decision makers must consider their assumptions concerning the nature

of whatever it is they are measuring in order for interpretations to be

meaningful. In fact, the value of any decision making rule may be

questionable if logical or empirical analysis of the measurement proce-

dure and the property or attribute being measured indicates that the

underlying model is inappropriate.

This discussion has not addressed the relative costs of misclassi-

fication. That is, it has been tacitly assumed that whatever losses

occur as a result of incorrectly classifying a master as a nonmaster

are equivalent to those resulting from the incorrect classification of

a nonmaster as a master. A number of authors (e.g., Block, 1972;

Hambleton and Novick, 1973; Novick and Lewis, 1974; Hambleton, Swami-

nathan, Algina, & Coulson, 1978) have criticized this assumption and

suggested procedures to deal with unequal losses. The problem is not

addressed in this study for tvo reasons. First, each of the models

vo
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considered could be elaborated to include the relativo coats of sta-

classification. However, this would complicate the implementation and

discussion of the models without substantially contributing to the

comparison. Second, although misclassification costs may differ

greatly in certain applications, particularly those involving certifi-

cation or licensing, they appear to be ignored in most instructional

programs implementing criterion-referenced tests (Hambleton, Swami-

nathan, Algina, & Coulson, 1978).

True Score and Human Capabilities

In order to choose a measurement model to evaluate test results,

knowledge concerning the nature of the attribute being measured must be

available. Gagnt and Briggs (1974) present a framework for research

with the potential for supplying the information necessary to choose an

appropriate measurement model. Human capabilities are divided into five

general categories in the Gagni and Briggs model: intellectual skills;

cognitive strategies; information; attitudes; and motor skills.

Intellectual Skills

Intellectual skills allow an individual to deal with conceptual-

izations and relationships within his environment. They can be as

simple as discriminating between two different geometric figures, or as

complex as deriving a system of relatlonships to explain the workings

of society. Evidence that an intellectual skill has been acquired is

shown when "it is possible to say with confidence that the learned per-

formance has a kind of 'regularity' over a variety of specific situa-

tions. In other words, the learner shows that he is able to respond

with a class of relationships among classes of objects and events"

lp
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(Gagnd and Briggs, 1974, p.4 3). This implies that performance of an

intellectual skill is expected to be displayed in an "all-or-none"

fashion, or that measurement is over a true dichotomous variable.

Either the individual has the capability implied by the skill, in which

case it can be applied repeatedly, or the skill has not been learned,

in which case the individual would not be expected to be able to apply

it. Inconsistent behavior may imply that solutions to specific problems

have been memorized as opposed to acquisition of the necessary intellec-

tual skill. Graham (1974) and Graham and Bergquist (1975) report

studies which indicate that tests designed to measure acquisition of

unitary, explicitly defined intellectual skills yield essentially bi-

modal distributions, demonstrating the viability of the dichotomous

variable assumption.

Cognitive Strategies

Intellectual skills provide a means for the individual to deal

with objects and relationships in his environment. By contrast, cogni-

tive strategies refer to the individual's own internal thought pro-

cesses. In other words, cognitive strategies are the skills that are

used to organize and guide the internal processes involved in defining

and solving novel problems. Evidence for the acquisition of cognitive

strategies is shown when the individual is able to develop solutions to

problem situations "in which neither the class of solution nor the

specific manner of solution are specified for the learner. The learner

needs to have available a variety of cognitive strategies of problem

solution from which he can make a selection" (Gagnd' and Briggs, 1974,

p.49).

W ar -" '- '- - - ... . - "' - - ' . .l
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The measurent procedures reqtitrod for dotormiutitA t e aequiatttt

of cognitive strategies present problems quite different from those for

intellectual skills. Precise operational definitions of cognitive

strategies have yet to be developed. Further, a taxonomy of cognitive

strategies, which would allow for determination of the specific skill

or skills used in solving unique problems, is not yet available. At

tbi point, perhaps the best that can be hoped for is a general index

of an individual's repertoire of cognitive strategies. Measurement

models appropriate for the assessment of cognitive strategies are most

likely to be from the class which assumes an underlying continuous

variable. Though it may be possible in the future to identify specific

cognitive strategies which are acquired in an all-or-none fashion, at

present the continuous true score model appears more managable and

irterpretable.

inormation

Information refers to names attached to objects or to concepts,

and to facts or stated relationships between objects or concepts. The

acquisition and retention of information is necessary for communication,

f r facilitating the learning of other types of capabilities, and, very

possibly, for any sort of conscious thought above a superficial level.

Gag" and Briggs (1974) discuss three types of information:

lawmr, facts, and bodies of knowledge. Labels are simply names at-

taend- to objects or concepts. Evidence that a label has been acquired

iU swh when an Individual can respond to a particular object or

Imple of a concept by stating its name. It is important to emphasize

tbs difference between naing a concept and acquiring the intellectual
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skill implied in being able to use the concept. Information has been

acquired if an example of the concept elicits a name. Acquisition of

an intellectual skill does not require that the concept be named

(although the name is usually known). Rather, any example of the gen-

eral class of objects, events, or relationships which is defined by the

cencept must be recognized as a member of the class.

Facts are stated relationships between two or more objects or

events. Like labels, facts may stand alone. If an individual can

state the relationship between given objects or events, then evidence

that a fact has been acquired is provided. Acquisition of a fact does

not imply the ability to generalize relationships to objects or events

not initially presented during the learning of the fact. The ability

to generalize would only be expected to occur if an intellectual skill

had been acquired.

When interrelated labels and facts are considered as a group, the

collection is usually known as a body of knowledge. Bodies of knowledge

represent the most common implication of the term "information", and

are probably more useful than single labels or facts in dealing with

practical problems. Evidence for the acquisition of bodies of knowl-

edge presents problems in logistics and inference. It is rarely

feasible to ask individuals to state all of the labels and facts that

go into a body of knowledge. Instead, the individual is normally pre-

sented with a sample of some of the labels and facts, and if acquisi-

tion of the sample is shown, he or she is assumed to have acquired the

entire body of knowledge.

I,
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Graham and Bergquist (1975) address the problem of choosing an

appropriate measurement model for assessing the acquisition of infor-

mation.

One might argue that single units of verbal information
such as labels or single facts are recalled in an all or
none manner. Even if this is true, the measurement of
single units of information is probably a trivial opera-
tion in most instances. Seldom is a single unit of in-
formation considered of sufficient importance to be tested
separately. More commonly, a collection of information,
preferably interrelated to comprise a body of organized
knowledge, is tested simultaneously. A collection of
information forms a content domain from which items are
randomly sampled. Performance of an examinee relative to
the entire domain depends upon the number of discrete
units of information that have been acquired and remem-
bered. If it is assumed that achievement of each of the
discrete units of information is demonstrated indepen-
dently, any proficiency from 0-100% might be demonstrated
on a test. Thus, achievement of verbal information
measured by a domain-referenced test would be demonstra-
ted as a continues variable. (p.3)

Attitudes

Attitude is a term used to characterize the internal conditions

which affect an individual's behavior towards the external environ-

ment. Attitudes may refer to a system of beliefs, to an internal con-

dition arising as a consequence of a conflict in beliefs, or to feelings

or emotions. Gagnd and Briggs (1974) suggest a more behavioristic

point of view. They define attitude as "an internal state which affects

an individual's choice of action toward some object, person, or event"

(p.62). This definition provides a rationale for the assessment of

attitudes.

Choices of action are observable. If it can be assumed that

certain choices occur only if an attitude has been acquired, then it is

reasonable to assess attitude acquisition by means of observing the

n
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action an individual takes in a choice situation. Gagnd and Briggs

suggest that the acquisition of attitudes be expressed as the propor-

tion of times a particular action is taken in a given test situation,

or as the probability that one action will be chosen over another. The

class of measurement models appropriate for attitude assessment of this

type is that assuming an underlying continuous variable.

Motor Skills

Motor skills are the capabilities required for smooth and purpose-

ful muscular-skeletal movement. Merrill (1971) discusses three catego-

ries of motor skills: single responses, response chains, and skilled

performances. A single response occurs when a single muscular-skeletal

reaction is elicited in the presence of a particular stimulus. Evi-

dence for the acquisition of a single response is shown in three ways.

The first is reliability. Reliability implies that the desired re-

sponse, rather than some other response, occurs whenever the appropri-

ate stimulus is presented, and that it does not occur in the presence

of an inappropriate stimulus. Acquired single responses are also

characterized by a relatively short latency period between the stimulus

presentation and the response, and by their voluntary initiation but

involuntary execution.

Examples of single responses are very rare in practical situations.

A more realistic level of motor skills is the response chain. Response

chains consist of a series of coordinated single responses which repre-

sent a single complete performance. An example is swinging a baseball

bat. The performance of interest includes the smooth Initiation of the

swing and continues through the follow through. While swinging a bat

. .. .W
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could be analyzed in terms of the multitude of individual single re-

spouses, for most purposes the overall performance of the swing is of

greatest importance. Evidence for the acquisition of response chains

is similar to that for single responses. Once a response chain has been

adequately acquired, it is characterized by its reliability, short

latency, and the smooth involuntary occurrence of the series of single

responses following voluntary initiation of the chain.

Skilled performance requires the coordination of several response

chains in the presence of a set of stimuli. Skilled performances are

complex and difficult capabilities. They require that each component

response chain be fully acquired. They also require that the indivi-

dual be able to distinguish between a variety of stimuli and be able to

respond with the appropriate response chains. Gagnd and Briggs (1974)

refer to Fitts and Posner (1967) in discussing how such skilled perfor-

mances come about. In addition to the acquisition of each component

response chain, Fitts and Posner hypothesize an executive sub-routine,

which is the internal cognitive thought processes which coordinate the

skilled performance. The learning of a skilled performance therefore

requires the development of an executive sub-routine in addition to

the learning of the required muscular-skeletal performances.

Assessing skilled performance presents difficult problems. Indi-

viduals vary with respect to the degree of precision with which, they

can carry out the performance, and the speed at which they can perform.

While absolute limits may exist that characterize the best performance

that can be achieved, these limits are generally not known, and are

probably not very important. For example, at one time running a

LA•
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four-minute mile was the best that could be expected of anyone. Four-

minute miles will no longer win track meets, and it is presumptuous to

hypothesize how fast a mile will eventually be run.

It seems to be illogical to discuss whether a skilled performance

has been acquired in absolute terms. Rather, the performance must be

described in terms of whether it is adequate relative to some standard.

The standard will vary from situation to situation. For example, the

standards for running a mile for an athlete in condition will be quite

different from those for an individual trying to maintain good health.

In such cases, the goals of the individual help dictate the standards.

In other situations, where individuals act as part of a group, the

system may dictate the standards. Setting standards within the context

of a system is discussed by Glaser and Klaus (1963), "In practice,

proficiency standards can be established at any value between the point

where the system will not perform at all and the point where any fur-

ther contribution from the human component will not yield any increase

in system performance" (p.424).

Choosing an appropriate measurement model for motor skills presents

many of the same problems as those for information. If single responses

or response chains are to be measured, dichotomous true score models

appear to be most appropriate. For the assessment of skilled perfor-

mance, continuous true score models seem to be required.

Measurement Models

Six alternative measurement models will be discussed in this

review of literature. They were chosen partly on the basis of their

availability in the literature, and partly to represent a wide variety

$
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of approaches that may help solve the criterion-referenced measurement

problem. Two of the models assume that true score is a dichotomous

variable. The other four asse a continuous true score. All six

models asie that responses are scored dichtomously and that responses

are locally independent for a given individual. In other words, an

Individual can only get an item right or wrong (as opposed to being

able to get partial credit) and responses to any given item are not

dependent on responses to any other item.

The dichotomous true score models were developed by Emrick and

Mdms (1970) and Macready and Dayton (1975). The continuous true score

models were developed by Kriewall (1969, 1972) and Millman (1972), Lord

and Novick (1968), Novick and Lewis (1974), and Rasch (Wright and

Psuchapakesan, 1969). The following section of this review treats each

model in detail. A more complete discussion of criterion-referenced

measuremet models can be found in Millman (1974), ambleton, Swasi-

nathan, Algina, & Coulson (1978), and Steinheiser, Epstein, Mirabella,

& Macready (1978).

The Umrick and Adama Model

Norick and Adams (1970) ad Emrick (1971a, 1971b) have developed

evaluation model for mastery testing based on the assumption that

objectives can be derived which reflect unitary and explicitly defined

skills. The madel assumes that mastery for each skill is an all-or-

avms variable. Appropriate tests of skill mastery consist of itm

which ae highly homogeneous in terms of content, form, and difficulty.

For such tests, the model assumes that each item provides an unbiased

estimate of an individual's mastery status with respect to the skill

being measured.

17 -
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Two types of measurement error are associated with items that fit

the model. A false positive error occurs when an individual whose true

status is nonmaster (R) answers an item correctly (e.g., lucky guesses).

A false negative error occurs when an individual whose true status is

master (M) answers an item incorrectly (e.g., careless error). These

relationships between true mastery state and measurement error are

represented in Table 1.

Expected score distributions for masters and nonmasters follow the

familiar binomial distribution:

P(c, wIM) - (n)(l-b)cbw, and (1)

P(c, wIR) - (n)ac (1-a)w, (2)

where, n is the number of items on the test, c is the number of correct

responses, w is the number of incorrect responses, a is the probability

of a correct response from a nonmaster, b is the probability of an in-

correct response from a master, and (n) is the binomial coefficient for

c successes in n trials. The expected distribution of correct and in-

correct responses for the overall group of examinees is then,

P(c,w) - P(M)P(c,wIM) + P(M)P(cwJM)

n w -n c w
- P(M) (c)(l-b) b + P(M)(C)ac(l-a)W. (3)

Table 1 shows the relationship between true mastery state, observed

responses to a single item, the probability of a false positive error,

and the probability of a false negative error. The probabilities of

false positive and false negative errors are treated as response contin-

gencies and a phi coefficient is computed, indicating the correlation

between observed responses on a single item and true mastery state

(Emrick, 1971s, p.323):

':' ] ' I.
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Observed Response

Wrong Correct

True Mastery Master b 1-b

State Nonmaster 1-a a

Table 1: True Mastery State and Measurement Error for the Emrick Model

a - the probability of a correct response from a nonmaster

b - the probability of an Incorrect response from a master

1-a the probability of a valid nonaster incorrect response

1-b = the probability of a valid master correct response

dP
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phi = (l-a-b)/vT-.a-S7 (4)

A second estimate of the correlation between observed responses

and true mastery state is obtained by computing the average interitem

correlation among the items on the test. Average interitem correlation

was estimated by Emrick by computing the test reliability using the

Kuder-Richardson formula 20 and then adjusting the reliability to that

of a single item using the Spearman-Brown prophecy formula. Since

reliability is defined as the proportion of total variance that is

true variance, it can be interpreted as an unbiased estimate of the

squared correlation between an examinee's true mastery state and his or

her item response.

By equating item reliability with phi (squared), item responses,

true mastery state, and error probabilities are directly related. If

the ratio of the probabilities of false positive to false negative

errors is known (or if it can be estimated), values for the probabili-

ties can be calculated.,

Epstein (1978) and Wilcox and Harris (1977) have shown that the

analysis as described in the model is only appropriate if the propor-

tion of masters equals the proportion. of nonmasters in the group of

examinees. The correct relationship between the reliability of a

single item, the measurement errors, and the proportions of masters

and nonmesters is

rim. (phi)2 -= ,,b] (5)
2 (5)

(1-a-b+2ab+P O(b-b 2 )/P(R)+0(R)(a-a 2)/P O0]

.
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were ri is the reliability of a single item (Epstein, 1978, p.51;

Wileon and Barris, 1977, p.217). For the case where P(X)O(F, the

above equation reduces to the form described by Earick in equation (4),

r,7 (phi)2- (1-a-b)2 /(-(a-b) 2).

In order to operationalize the model, the test developer must

provide estimates for the ratios of the probabilities of false po itive

to false negative errors and P(M) to P(R), and ri must be calculated.

Equation (5) (or equation (4), if appropriate) can then be solved. Al-

though the estimates are subjective, a logical analysis of the testing

situation combined with experience in using the model should lead to

realistic values. For example, the ratio of the probabilities of false

pooltive to false negative errors for a four response multiple choice

test is likely to be much greater then the ratio of the probabilities

of false positive to false negative errors for a constructed response

tst. &is Is sbily because chance alone allows unomasters to. get

some items correct en the multiple choice test, while the likelihood of

a nommsatt guessing the correct response to a constructed response

item is relatively low. Similarly, the ratio of masters to nowmasters

in the examines population should not cause undue problems, particular-

ly if the instruction has been well designed and systematic steps have

been taken to control student learning. For example, if results from a

post-test awe being analyzed, the ratio of P(M) to P(R) should be

relatively hih. In a pre-test situation the opposite would be the

caw. I cnservative estimate for the ratio of P(M) to P(R) is 1-0,

and may prove useful as a starting poiat until sore experience is

Sagasd In using the model.

-7 - Z
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Emrick proposed that mastery cutoff scores be optimized in terms

of the relative costs of incorrect mastery/nonmastery decisions, and

the previously determined parameters. The optimization formula is

log [b/(l-a)] + (1/n) log CL2P(M)/L 1P(M)I, (6)
log [ab/{(l-a) (l-b))]

where, k is the percent of items correct required for a mastery deci-

sion, a is the probability of a false correct response, b is the proba-

bility of a false incorrect response, L1 is the cost associated with a

false pass decision, L2 is the cost associated with a false fail deci-

sion, n is the number of test items, P(M) is the proportion of masters

in the examinee group, and P(R) is the proportion of nonmasters in the

examinee group (Emrick, 1971a, p.324).

Emrick (1971b) discusses an empirical validation of the evaluation

model for mastery testing. An experiment was conducted in which 96

third grade students were taught to identify three increasingly complex

concepts. Tests designed to show their ability to identify members of

a group of objects which belong to the concept group were administered

following the training. The results were analyzed according to the

model. Results for 5 and 10 item forms of 2-option and 4-option multi-

ple choice tests were analyzed. The results from common forms of the

post-test were then aggregated and compared to the results of the last

10 training trials. Emrick concluded .that, "the evidence derived in

support of this model, although not striking or dramatic is nonetheless

favorable" (p.49). Because of the problems associated with prior

estimation of the proportions of masters and nonmasters (not addressed

in the Erick paper), the small sample size and complexity of the ex-

perimental design, and a rather confusing discussion of the model

sit-, P
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validation procedure, further research should be conducted before any

conclusions are reached concerning the appropriateness of the model.

The Macready and Dayton Model

The Macready and Dayton model (1975) is a special case of a general

probabilistic model developed by Dayton and Macready (1976) for valida-

ting behavioral heirarchies. The general model provides great flexi-

bility by allowing for a wide variety of true response patterns and by

allowing measurement error to be item specific. The cost of this

flexibility is that for the more complex models a relatively large

number of test items is required and, for all models, a large subject

population is required to obtain stable parameter estimates.

Macready and Dayton argue that a reasonable approximation of the

more general model for criterion-referenced testing purposes is obtain-

ed if mastery is defined as an all-or-none variable. Under this assump-

tion, the only allowable true response patterns would be all correct or

all incorrect. Measurement errors are (1) the probability of a non-

master guessing the answer to an item correctly, and (2) the probabil-

ity of a master missing an item. If the probabilities of each type of

error are constant for all items on a given test, then the Macready and

Dayton model begins with the same statistical model as the Emrick and

Adams model. Macready and Dayton also allow for the more complex case

where the error probabilities are item specific.

For example, if a four item test were given, the assumption that

the true score be an all-or-none variable requires that the only error

free response patterns are (0,0,0,0) for nonmasters, and (1,1,1,1) for

masters. For the general case, the probabilities of a nonmaster

passing items are a,, a2 , a3 , and a4 for each item respectively.

CON •:
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Similarly, the probabilities of a master getting items incorrect are

b1 , b2, b3, and b4. In general, there will be 2n possible response

patterns for an n item test. The necessary equations for the proba-

bility of response pattern j occuring under the general model are
n (l-x ij) x

P(j IM) - b(i  (1-b )xj (7)
i=l

for masters, and
n x (l-x 

P Q I - H a i i (1 -a i) (8)

for nonmasters, where i is the item number from I to n, and xij, which

can equal 0 or 1, is the score on the ith item for response pattern j

(p.3). When the equations for masters and nonmasters are combined, the

probability of the jth response pattern is

P(J) = P(M)P(JIM) + P(M)P(JIM). (9)

For example, for response pattern (0,1,1,0), the necessary equa-

tions are as follows. For masters, the probability of the above re-

sponse pattern is b, x (1-b2) x (1-b3) x b4 . The four terms are

necessary to account for the different measurement errors for different

items. For nonmasters, the probability of the response pattern above

is (1-a1) x a2 x a3 x (1-a4). Combining these results, the probability

of observing the above response pattern is

P(O,1,1,0) - P(M)bl(l-b2) (l-b3)b4 + P(M)(l-al)a 2a3(l-a4 ). (10)

For the simpler case of equal probabilities of error across test items,

the equation reduces to

P(0,1,1,0) - P(M)b 2 (1-b) 2 + P(M)a2(1-a)2. (11)

One more important difference between the two forms of the model

should be noted. For the general form of the model, the responseI

pattern is required to calculate the probabilities of interest. That

-__9ji
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is, P(O,l,l,O) - P(M)b1 (l-b2 )(l-b 3)b4 + P(M)(l-aI)a2a3(l-a4) is not

equal to P(1,O,O,1) - P(M)(l-bl)b2b3(l-b4) + P(M)al(l-a2 )(-a 3)a4 even

though both response patterns indicate two correct responses. How-

ever, in the simpler case of the model the probabilities are equal,
P(0,1,1,0) - P(1,0,0,1) = P(M) b2 (l-b)2 + P(M) a2 (l-a)2, and only the

number correct is required for carrying out the calculations. Since

the binomial coefficient indicates the number of ways a given number

of successes can occur in n trials, the final result under the simpler

case is the same as the Emrick and Adams basic equation (equation (3)),

P(c,w) = P(M) (n) (l-b)cbw + P(R) (n)ac(l-a)w.

The general case of the Macready and Dayton model requires that

2n + 1 parameters be estimated for an n item test. The 2n + I figure

is obtained from the probabilities of false positive and false negative

errors for each of the n items, plus either P(M) or P(R) since P(M) +

POO) 1. For the simpler case, only three parameters, a,b, and P(M)

or P(R) must be estimated. Macready and Dayton obtain the parameter

estimates by using maximum likelihood procedures. It is beyond the

scope of this presentation to go into their procedure in detail. How-

ever, it should be noted that the procedure, in general, attempts to

find values for the necessary parameters that will closely reproduce

the observed data. It also provides estimates of the variance of the

paraeter estimates, which may prove useful in evaluating the accept-

ability of the model in specific instances.

Once the parameters have been estimated the model can be used for

decision making. The procedure is logical and straightforward. For the

eneral case, the probabilities of masters and nomnasters obtaining the
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j response patterns are calculated. Mastery versus nonmastery classi-

fication rules are then established for each response pattern. For the

simpler case, the probabilities of masters and nonmasters obtaining

zero through n items correct are calculated, and a cutoff score is

chosen such that the probability that a master would achieve a score

below the cutoff score plus the probability that a nonmaster would

achieve a score at or above the cutoff score is minimized. In both

cases the strategy is to minimize the total misclassification for the

examinee group. Macready and Dayton have computer programs available

for analyzing data. In addition, they provide tables showing optimal

cutoff scores for various test lengths, parameter estimates and loss

ratios in their 1975 paper.

The Proportion Correct Model

The first and least complex of the models which assume that mastery

is a continuous variable is based on the proportion of items answered

correctly on an n item test. The basic model has been developed theo-

retically and operationalized by Kriewall (1968, 1972). Millman (1972)

discussed the model's practical applications and developed useful and

easy to understand tables which may be used in test development. A

unique aspect of the model is that the procedures and their applica-

tions to real problems are independent of sample data. The other models

discussed here, and, in fact, most psychometric models, use observed

examinee data to estimate parameters. The sample free nature of the

Kriewall and Millman approach is very appealing for criterion-referenced

testing. It is the only method that does not compare examinees in esti-

mating abilities. Since the other models use observed scores to

oi P I



28

estimate parameters, examinees are indirectly being compared to one

another.

The model assumes that the items on a test are a random sample of

items from a well defined domain. The domain must be sufficiently

homogeneous for all the items within the domain to be equally difficult

for a given individual. This does not mean that items will have equal

difficulty in traditional psychometric terms. More capable individuals

will find the items easier than less capable individuals. However, for

any given examinee, the probability that he or she will respond to an

item correctly is the same for all items within the domain. Kriewall

defines "proficiency" as the probability of a correct response. It may

vary from 0 to 1.0, and will be denoted p.

The model also assumes that items are locally independent. Inde-

pendence of items is not an obvious concept. Local independence of

items implies that a person's response to any given item on the test is

statistically independent of his response to any other item.

To state it another way, in an infinite subpopulation
of examinees, all of whom are at the same ability level,
scores on one test item will be statistically independ-
ent of scores on another. It will be recognized that
the assumption of local independence does not imply
that test items are uncorrelated over the total group
of examinees (Lord and Novick, 1968, p.361). Correl-
ations between items measuring the same ability will,
in general, exist whenever the examinees responding
to the items differ on the underlying ability measured
by the test. (Hambleton and Traub, 1973, p.196)

The basic equation for the model is the distribution of the number

correct score for a given proficiency over repeated random samples of

n items from the domain. It is binomial with parameter p, the profi-

Clany:
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f(xlp) - (n) pX(lp)n-x (12)

where, x is the number of items answered correctly given proficiency p.

The error of measurement for a given individual with proficiency

p, expressed in terms of the number of items erroneously missed or

passed, will be denoted ep . ep for an n item test is

ep W x -np. (13)

Since the expected value of x for an n item test is np, the expected

value of the error of measurement, for repeated testing, is zero. More

specifically, it can be shown (Lord and Novick, 1968, p.458) that the

obtained proportion correct, x/n, is the maximum likelihood estimator

of the true proportion correct or the proficiency. The estimate has a

variance of p(l-p)/n which can be made as small as desired by suffi-

ciently increasing n. This implies that longer tests provide better

estimates of proficiency than shorter tests.

The model provides probabilistic information about test performance

for any ability of interest. In some cases this information will be all

that is required by the decision maker. More frequently, an easy to

use rule for categorizing students will be desired. Such a rule can be

developed according to the following scheme.

Two abilities must be identified, a minimum mastery proficiency,

and a maximum nonmastery proficiency. Minimum mastery represents the

proficiency an individual must have with respect to the domain to be

considered a master. Rarely will 100% mastery be required. More

common levels of minimum mastery might be 701, 802, or 902, depending

on the importance of the material and the level of competency desired.

It is important to keep in mind that proficiency may be defined as the

- 4
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proportion of all possible test items in the domain that would be an-

swered correctly. It may also be defined as the probability of respon-

ding correctly to a randomly chosen item from the domain. It is not

necessarily the percent of the items that must be answered correctly

on a particular test in order to pass.

The maximum nonastery proficiency is the highest level of profi-

ciency an individual could attain over the domain and yet not be con-

sidered a master of the material. Maximum nonmastery levels are often

about 50Z. That is, it is often considered reasonable to assume that

even if an examinee knew half of the material included in the domain,

he could not be considered capable enough to be called a master. Any

proficiency between the minimum mastery proficiency and the maximum

nomastery proficiency falls within an indifference region. That is,

it makes no practical difference whether an individual with a profi-

ciency that falls within the indifference region is classified a master

or a nonaster. In general, the larger the indifference region, the

smaller the number of test items required for decision making.

The probabilities for achieving any given score on an n item test

for minimum masters and maximum nonmasters can be calculated by apply-

ing the basic equation. Misclassification occurs when nonmasters are

classif Ad as masters and masters are classified as nonmasters. The

desired decision rule is one which has a cutoff score which miniaizes

this przmbility of misclassification. The probability of aisclassifi-

catiom for masters as nomastars is

c-1b"£ n) pl ,n-x
b E (X ) m (-P a , (14)

Orn
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and the probability of misclassifying a nonmaster as a master is

n
()xp ;- x, p _n(15)

XC m

where, n is the number of test items, x is the number of correct respon-

ses, c is the minimum number of correct responses required for a mastery

decision or the cutoff score, pm is the minimum mastery proficiency, and

pr is the maximum normastery proficiency. By carrying out the above
m

calculations with various values of c, an optimal cutoff score can be

determined along with its probabilities of misclassification.

It is important to realize that the model represents only a gross

approximation of reality. The model deals with only two proficiency

states explicitly. This would be fine if all examinees had proficien-

cies equal to the minimum mastery or maximum nonmastery proficiencies.

Of course this will never be the case. Fortunately, the model is con-

servative. The probabilities of misclassification for examinees with

proficiency above minimum mastery or below maximum nonmastery must be

less than the probabilities of misclassification for examinees at these

levels. Since examinees with proficiencies in the indifference region

are no problem, the actual number of misclassifications is expected to

be less than that predicted by the model.

The Binomial Error Model

A natural extension of the proportion correct model is the bino-

mial error model (Lord and Novick, 1968). The binomial error model is

more powerful than the simple proportion correct model because the

entire distribution of obse,-ved responses is included in the analysis.

All of the assumptions discussed with respect to the proportion correct

- /
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model hold for the binomial error model. The conditional distribution

for observed score x for given true proportion correct p is the binoemn4

h(xlp) - (1) pX(l-p)n-x, (16)

where, n is the total number of items on the test. It is also assumed

that items are scored dichotomously, that total score for an examinee

is the number of items answered correctly, that items are locally in-

dependent, and that items are equally difficult for a given examinee.

An addition to the proportion correct model is the specification

of the relationship between the observed score distribution and the

underlying true proficiency distribution

(x) = (X)fog (p)pX(1 -p)nxdp, (17)

where *(x) is the distribution of the observed scores, and g(p) the un-

known distribution of true scores (Lord and Novick, 1968, p.512).

Lord and Novick (1968) show that if the regression of true score

on observed score is linear then the distribution of the observed

scores for the entire examinee group, symbolized h (x) to distinguish

this special case from the general case (x), is negative hypergeo-

metric

(n)) (n)
h(x) [ sn(r+s) I [{(-n)x(r)x}/{(-s)xx!l], (18)

where r and a are parsmeters to be determined, s(n) is defined as

s(-1)...(s-n+l), (s) x is defined as s(s+l)...(s+x-l), and s(o) and

(s), are defined to equal 1 (Lord and Novick, 1948, p.516). The para-

meters, r and s, can be expressed in terms of the moments of the ob-

served score distribution as follows (Lord and Novick, 1968, p.517):

t 4,L
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r - (-1+1/a2 1)ux, (19)

s - -r-l+n/Q 2 1, and (20)

21 [n/(n-1)] [l-pa (n-i )/v02]. (21)

Lord and Novick (1968) prove a very useful consequence of the

model. "Under the binomial error model, if the observed score distri-

bution is negative hypergeometric, then the regression of true score on

observed score is linear" (p.517).

The discussion thus far has outlined an internal check of the

appropriateness of this model for any given data set. That is, if one

can show adequate fit to the negative hypergeometric distribution by

the observed scores, then it is reasonable to continue with this model

assuming linear regression. If adequate fit is not obtained, then the

more general nonlinear regression approach must be used, or alternative

models must be identified.

Lord and Novick (1968) show that if the observed score distribu-

tion is negative hypergeometric, the true score distribution is either

the two parameter beta distribution, or some other distribution having

identical moments up through order n. In either case, they show

(p.521) that the regression of true proficiency on observed score is

given by the linear equation
x (l-c )ix.

E(ptx) - "21 + 21 X. (22)
n n

Epstein (1975) provides an example of the use of the binomial

error model for criterion-referenced testing. The data described in

his paper were shown not to statistically significantly deviate from

the negative hypergeometric distribution using a chi-square goodness of

TWO!=, . . . . I iiio
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fit test, and the appropriate regression equation was calculated. He

then calculated true score estimates for each observed score and sug-

gested that the obtained true score estimates be used for decision

making instead of the raw observed proportion correct scores. Epstein

did not specify a particular decision making model in his paper. How-

ever, the situation described clearly fits the Roudabush Case IV

situation; a pseudo continuous measure of a continuous true score,

described earlier.

The Beta-Binomial Bayesian Model

The binomial error model builds on the simple proportion correct

model by using group data and an assumption concerning the form of the

underlying true score distribution in computing true score estimates

from observed scores. Novick and Lewis (1974) introduce information

which is known about the performance of examinees before testing as a

prior distribution in their development of a Bayesian procedure for

criterion-referenced decision making.

A reasonable choice for a prior distribution is one that is a

amber of the Beta family of distributions (Novick and Jackson, 1974).

Recall that one of the theoretical results of the binomial error model

is that if the observed score distribution fits a negative hypergeo-

metric distribution as required, then the true score distribution will

be a amber of the Beta family. Beta distributions can take on a

variety of forms including a uniform distribution of. proficiency from

0 to 1.0, a close approximation to the normal distribution, a U shaped

distribution, and extremely skewed distributions in either direction.

For the case of dichotomously scored tests where the conditional (on

•- 4FI A
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proficiency) observed score distribution is binomial, a Beta prior

distribution combined with the observed data yields a Beta posterior

distribution. In fact, if the prior distribution is B(r,s) and x

correct responses are observed for n items, then the posterior distri-

bution is B(x+r, n-x+s).

The procedure is extremely easy to use, once a prior distribution

has been specified. One simply determines the appropriate posterior

distribution for each observed score and then finds the probability

that the proficiency equals or exceeds some criterion proficiency. If

the probability is sufficiently high, the examinee is classified a

master. Otherwise, a nonmaster classification is made. For example,

consider a case where little is known about the examinee group. A

reasonable choice of a prior distribution is that proficiency is uni-

formly distributed, B(1,1). If a examinee score of 7 correct on a 10

item test is observed, then the posterior distribution is

B(7+1, 10-7+1) - B(8,4). The probabilities that the examinee's profi-

ciency is greater than or equal to .60, .70, and .80 are .88, .69, and

.38, respectively. If the criterion proficiency had been set at .70

and a probability of .5 or better had been set for a mastery decision,

then such a student would be classified a master. If, however, the

criterion proficiency was .80, then using the .5 or better decision

rule, the student would be classified a nonmaster.

Novick, Lewis, and Jackson (1973) discuss methods for determining

the parameters of the prior distribution, Novick (1973) describes the

Computer Assisted Data Analysis (CADA) system which guides a decision

make'r through thr, prow'ss and the Novick and Lewis (1974) article



36

contains tables suggesting prior distributions for a series of instruc-

tionally relevant situations with the appropriate posterior distribu-

tions and probabilities for a variety of test lengths and observed

scores.

The Rasch Model

A relatively new approach to psychological measurement is based on

the Rasch logistic model (Wright, 1968; Wright and Panchapakesan, 1969;

Whitely and Davis, 1974). According to Wright, "The model says simply

that the outcome of the encounter (between an individual and a test

item) is governed by the product of the ability of the person and the

easiness of the item" (p.88). If this claim is true, it would seem

that the Rasch model represents an ideal tool for criterion-referenced

testing. Yet, as Whitely and Davis (1974) point out, "To date, however,

the Rasch model has had little apparent impact on test development.

The reasons for this are not clear, particularly since initial research

has been encouraging" (p.164).

Tests which fit the Rasch model have the following specific pro-

perties: (1) the estimated values of the item easiness parameters will

not vary significantly over different samples of people, (2) the esti-

mate of a person's ability, given a raw score, will be invariant over

different samples of people, and (3) the estimates of a person's abil-

ity from any subset of Rasch calibrated items will be statistically

*q'Ivalent.

In order for the Rasch model to be applicable, several basic

assumptions muat be met. The first assumption is that subjects and

items are locally independent.

PIP IV
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Independence of subjects means that the item responses
of any given person do not affect the responses of any
other person. Independence of items, on the other hand,
means that a person's responses to preceding items do
not affect his responses to later items. Thus, the
probabilities a person will pass the various individual
items must remain invariant, regardless if the ability
test contains the whole item pool or only some subset
of items. (Whitely and Davis, 1974, p.16 5)

Items comprising a test which fits the Rasch model are assumed to

all be measuring a single unidimensional latent trait. What this means,

practically, is that the items must be homogeneous in the sense that

they all measure the same single ability. Statistically, unidimen-

sionality implies "that if subjects are grouped according to raw score,

within each group, there will be no remaining significant correlations

between items. Thus, all of the covariation between the items (over

the total group of examinees) is accounted for by variation of persons

on the latent trait (ability) to be measured" (Whitely and Dawis, 1974,

p.165).

Discrimination refers to the quality of an item in terms of the

information it provides about levels of ability. For example, if all

individuals, regardless of ability, passed an item, that item would

have a discrimination of zero. It provides no information about level

of ability. Discrimination is a function of the rate at which the

probability of passing an item increases with increasing ability.

Items which fit the Rasch model are assumed to have equal discrimina-

tion. The Rasch model does not contain a parameter associated with

discrimination. It should be noted that equal discrimination does not

imply anything about item easiness. Clearly, a range of easiness is

required for practical testing. Items can be equally discriminating

, ,l - - . . . lil L
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for different ranges of the ability continuum, and therefore be unequal

in easiness. The final assumptions of the Rasch model are that guess-

ing is negligible and that there are not errors in scoring.

The mathematical properties of the model can be most easily de-

scribed in terms of an item by total raw score group matrix. For an n

item test, such a matrix will have n rows, one for each item, and n-i

coltmns, one for each total raw score, 1, 2,...,n-l, except 0 and n

correct. Total raw scores of 0 and n correct are excluded because they

provide no information about the items. Each cell represents the

probability, Pij. that an individual with ability A will pass item i

with easiness parameter E . The Rasch probability function (Whitely

and Davis, 1974, p.16 4) is

P (Aj x Ei)/(l + Aj x Ei). (23)

In order to estimate the Rasch item and person parameters, the

cell probabilities must be converted to likelihood ratios. Likelihood

ratios are most easily thought of as betting odds and are defined as

the ratio of the probability of passing to the probability of failing:

(Aj x E )/(l + Aj x E )

Likelihood -P /(1-P ) - i ji
i/ ij 1 - (A x E i)/(l + Ai x E i

(A j x E i)/(l + A ix Ei)

1/( + Ai x Ei)

-Aj x Ei.  (24)

Converting to logarithms allows for simpler computations and shows

that, on a logarithmic scale, the log-likelihood that a person will

pass an item is simply the sum of the log of his ability and the log of

the easiness of the item. Symbolically, these relationships are

a -. ., .... .
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indicated as follows:

tj log PiJ/(l-Pij), (25)

bj log A., (26)

dI = log Ei, (27)

and, from equation 24 above,

t =b + di. (28)

Wright and Panchapakesan (1969) and Wright and Mead (1975) have

published computer programs to estimate Rasch parameters using maximum

likelihood procedures. For each item, its easiness parameter estimate

and the standard error of the estimate is calculated. Similarly, for

each rrw score group, its ability parameter estimate and the standard

error of the estimate are calculated. Goodness-of-fit information is

calcu#ated and a variety of descriptive statistics, tables, and graphs

are provided.

Kifer and Bramble (1974) describe an attempt to use the Rasch model

to calibrate a criterion-referenced test. They also discuss how Rasch

model ability estimates can be interpreted in terms of criterion-refer-

enced testing. The general procedure they followed consisted of (1)

an initial attempt to calibrate the item pool, (2) based on the results

of the initial calibration, elimination of items which did not fit the

model, (3) recalibration of the item pool, and (4) estimation of

abilities. The interpretation problem was to determine whether a

particular score exceeded some criterion required for mastery. Kifer

and Bramble's procedure follows.

W R-- n
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Given any criterion, we assume that the estimate of
latent ability at the criterion is an estimate of the
'true' ability at that point. The standard error of
measurement associated with that ability level is
assumed to be an estimate of the observed score dis-
tribution around the 'true' criterion. Based on these
assumptions, it is possible to ask the question of the
probability that any observed score comes from that
particular distribution. Although the choice of
sampling distribution for our estimates is arbirtary,
because maximum likelihood estimates are asymptoti-
cally normal, we choose the normal distribution.
(p.4)

The probability information available from such an interpretation

of criterion and obtained scores can be used to estimate the probabili-

ties of misclassifying masters and nonmasters. This information, along

with the costs associated with misclassification, forms the basis for

decision making.

The Ra:sh model, as implemented for criterion-referenced testing,

clearly falls into the category of continuous true score models. It

seems to offer great potential for supplying ability estimates which

can be interpreted in absolute terms. It also seems to offer consider-

able flexibility in designing decision making procedures. A final

implication of the model lies in the interpretation of the criterion

scores. One problem with most criterion scores expressed as a percent-

age of the domain that must be mastered is interpreting a statement

such as 80% capable. The usual interpretation is that an individual

with 80% capability is expected to be able to do 80% of the items in

the domain. "Which 80%", is never answered. The latent trait theory

underlying the Rasch model may help. Rather than 80%, one may deter-

mine a criterion ability. Since ability is invariant from one set of

calibrated item to the next, the question of "which 80%" is

! !-
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irrelevant. Further research is required to substantiate Rasch model

claims for criterion-referenced domains of test items, to help in the

interpretation of Rasch ability estimates, and to establish procedures

for specifying criterion ability.

The Rasch model is only one of a class of measurement models

known as latent trait models. Latent trait models and the theory on

which they are based are receiving increasing attention in the liter-

ature. For example, the summer 1977 issue of the Journal of Educa-

tional Measurement is devoted to applications of latent trait models.

Latent trait models other than the Rasch model may include unique dis-

crimination parameters for each item, parameters to account for

guessing, techniques to utilize all of the information contained in

multichotomously scored items, or approaches to deal with multidimen-

sional tests. A thorough review of recent developments is provided

by Hambleton, Swaminathan, Cook, Eignor, and Gifford (1978). Despite

the attractive features of latent trait theory for criterion-referenced

testing, the Hambleton, et al. article points out that, "To date, only

a minimal amount of research has been done concerning the applicability

of latent trait models to criterion-referenced tests" (p.496).

tt W I = t W ~ f M M N M O N

Vl -W



3. METHODS

The general approach taken in this study is based on the conten-

tion that the ideal case for investigating criterion-referenced testing

and decision making is one in which the true abilities and measurement

error free test scores of the participating individuals are known.

Clearly, for empirical research, this is an impossible goal. However,

a reasonable approximation of a score free of measurement error may be

obtained if a very large number of items can be sampled from a domain

of interest and included on a test. The obtained approximate true

score can then serve as a criterion score for investigations of the

characteristics of tests of more realistic numbers of items. Given

this general approach and the objectives of this study, the primary

methodological considerations are those relating to choosing a suitable

data base, describing the test characteristics, choosing and implement-

ing the measurement models, and comparing the models.

A variety of data analyses are described in this and the results

section of this study. All analyses requiring computer assistance were

conducted using a Department of the Army TINIVAC 1108 computer located

in Edgevood, Maryland. With the exception of several procedures using

the Statistical Package for the Social Sciences (Nie, Hull, Jenkins,

Steinbrenner, and Bent, 1975), all other programing was done by the

author.

42
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The Data Bafte

The data for this study are .45 caliber pistol marksmanship scores

obtained by military police trainees on the Military Police Firearms

Qualification Course (MPFQC) (US Army Military Police School, 1975).

The MPFQC is used to certify trainees in pistol marksmanship, is re-

quired for graduation from the school, and is administered imediately

following training. Under normal circumstances, the test consists of

50 rounds fired from eight stations, called tables by the school,

differing in shooting position and distance to the target. The tables

were chosen by the school to represent a cross section of the kinds of

problems encountered by military police on the job (Figure 1).

The MPFQC represents a suitable data base for this study for

several reasons. First, it was designed as a criterion-referenced test.

Since the desired behavior is well defined and all items on the test

are representative of the behavioral domain of interest, it satisfies

the definition of a CRT offered earlier. Second, the behavior required

for each shot appears to be equivalent, yielding a homogeneous set of

test "items". Third, the test administrators and marksmanship instruc-

tors represented a source of expertise that could be called upon for

implementing a Bayesian analysis. Finally, and perhaps most important-

ly, the Military Police School agrced to modify its testing procedure to

allow each trainee in this study to shoot a total of 240 rounds.

The 240 rounds were fired in three separate repetitions of 80

rounds each. The first repetition was fired one morning, the second,

that afternoon, and the third, the following morning. Each 80 round

repetition consisted of firing 10 shots at each of the 8 tables on
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Table Distance Position

1 35 meters Prone - Two Hands

2 25 meters Standing - Two Hands

3 25 meters Standing - Left Hand

4 25 meters Standing - Right Hand

5 15 meters Kneeling - Two Hands

6 15 meters Kneeling - Left Hand

7 15 meters Kneeling - Right Hand

8 7 meters Crouching - Two Hands

Figure 1: The Military Police Firearms Qualification Course

..... ~~ -Now



45

the MPFQC. The 10 shots at each table were further divided into two

groups of five shots each. After firing the five shots, the trainees

reloaded their weapons, scores were recorded, and the holes in the tar-

get were taped to prevent feedback to the trainees. The 240 round score

served as the criterion approximate true score for subsequent analyses.

A total of 237 trainees participated in the study. This group re-

presented 10 different classes at the school. The first group of

between 20 and 25 trainees in each class to complete their training

formed the subject pool for this study. The data were collected from

November, 1976 to March, 1977 at the US Army Military Police School.

Analysis of the test results indicated the tables were not homo-

geneous with respect to difficulty. In fact, the HPFQC clearly consists

of two subtests. Tables 1 through 4 are relatively difficult. Tables

5 through 8 are relatively easy. These results influenced the sam-

pling plan for the more realistic subtests and also suggested the need

for two additional criterion scores, one based on the 120 hard shots

and the other based on the 120 easy shots. Subtests of 10, 20, 40,

and 80 shots were sampled according to the following scheme:

(a) The 10 round subtests were the table scores;

(b) The 20 round subtests were sampled to produce 6 hard tests
(Hard 21 - Hard 26), 6 easy tests (Easy 21 - Easy 26),
and 12 tests consisting of both hard and easy tables
(Mix 201 - Mix 212);

(c) The 40 round subtests were sampled to produce 3 hard tests
(Hard 41 - Hard 43), 3 Easy tests (Easy 41 - Easy 43), and
6 tests consisting of both hard and easy tables (Mix 41 -

Mix 46).

(d) The 80 round subtests were the repetitions.
Descriptive data from all of these subtests and the
specific sampling plan can be found in Table 2.

I
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HA RI S LASY MIX MIXI MIXIMIX HARI KASNI MLX t~MIX K221 24 21 24 201 202 207 208 41 41 4R2

REP1 . 756 .846-

TABLEI1 X .673 .654
GROUP1 X X X .673
GROUP2 X X X .673

TABLE12 x .623 .612
GROUPI X x X .643
GROUP2 X X IX .603

TABLE13 x .559 .650
GROUP1 X X X .563
GROUP2 X x X .555

TABLE14 x •654'.647
GROUP1 X X X •688
GROUP2 X x X .619

TABLE15 X .838 .563
GROUPI X X X .837
GROUP2 X x X .838

TABLE16 X .824 .620
GROUP1 X X X .815
GROUP2 X x _ X .833

TABLE17 x .905 .616
GROUPi X X X .911
GROUP2 X x I X .898

TABLE18 X .970 .515
GROUP1 x x x .967
GROUP2 x x X .972

MEAN .642 .626 .883 .883 .76 734 754 755%627 .884 762 .75.-

KR21 .649 776 .661 .682 .627 564 624 714823 744 733 .791

Table 2: MPFQC Shot Groups, Tables, and Sampled Subtests;
Means and Reliabilities
(an X indicates that shot group or table scores were summed
tc equal subtest scores)
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HARD HARD EASY EASY MIX MIX INIX MIX HA EASI MIX MIX
___22 25 22 25 203 204 209 2101 42 142 421 45 MAIKR21

lP2 .761 .875

TABLE21 X .683 .633
GROUP1 X X X .693
GROUP2 X X X .673

TABLE22 X .649 .660
GROUPI X X .666
GROUP2 X X X .632

TABLE23 X .537 .677
GROUPI X X X .540
GROUP2 X X X .534

TABLE24 X .670 712
GROUPI X X X .673
GROUP2 X X X .667

TABLE25 X .845 .633
GROUP1 X X X .857
GROUP2 X K X .834

TABLE26 X .823 .732
GROUP1 X X .827
GROUP2 X X X .817

TABLE27 X .906 .744
GROUP1 X I X .909
GROUP2 x X X .903

-L - - - -• -

TABLE28 X .974 .438
GROUPI X X X .971
GROUP2 X X X .976

MEAN .613 .677 .885 .911 .754 744 794 794 635 .884 749 .76

KR21 .764 .739 .600 .615 .63459169 584843 .79 748 .761

Table 2 (cont)

* *:M&

1,



48

HARD HARD AS EASY MIX IMIX IMIX MIX IMEAS HIq MIXI
23 26 23 26 205 206 2112121 43 431 43 46 ANKR21

REP3 .791 .855

TABLE31 X .654 .688
GROUP1 X X X .655
GROUP2 X X X .653

TABLE32 X .689 .654
GRJP1 X X X .695
GROUP2 X X X .684

TABLE33 X .620 .679
GROUP1 X X X .620
GROUP2 X X X .619

TABLE34 X .715 .688
GROUP1 X X X .738
GROUP2 X X X .692

TABLE35 X .881 .560
GROUP1 X K X .882
GROUP2 X X X .880

TABLE36 X .865 .662
GROUP1 X X X .862
GROUP2 X X X .869

TABLE37 X .928 .636
GRolp X X X 927
GROUP2 X X X 928

TABLE38 X 976 .448
GROUP1 X X X 972
GROUP2 x X X 980

mm .643 .662 .891 .914 .76 76 78 78 670 .91j 767 .761

KR21 .778 .711 .642 .551 156.70455 65 835.73 781 .721

Table 2 (cont)

-. |
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Test Characteristics

The important questions concerning the MPFQC involve the homoge-

neity of equivalent subtests and the stability and reliability of the

test scores. Average scores were computed and operating characteristic

curves were plotted to indicate similarities and differences in the sub-

tests. Stability and reliability were investigated using Analysis of

Variance (ANOVA) techniques and by computing the internal consistency

reliability for the overall test and the subtests using the Kuder-

Richardson Formula 21 (Lord and Novick, 1968).

The data collection and test administration procedures used in this

study represent a four-factor completely crossed experimental design.

The factors are (1) subjects, the 237 military police trainees who

participated in the study; (2) groups, the 2 five round shot groups

fired and scored for each table; (3) tables, the 8 distance/position

combinations; and (4) repetitions, the 3 repetitions of the 80 shot

MPFQC. If these data are treated in a four-factor completely crossed

ANOVA and the test is operating as desired, one would expect most of the

variance to be accounted for by the subjects. Appreciable variance due

to repetitions would indicate a learning (or forgetting) effect. Vari-

ance due to tables would indicate non-homogeneous tables. Variance due

to groups would indicate a serious lack of stability in the scores.

While an ANOVA appears to be a suitable and straightforward

technique for investigating the overall test results, there are several

problems which must be addressed. These involve the choice of random

and fixed factors, the large number of degrees of freedom involved in

testing the statistical significance of several of the F-ratios, and the

7|
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similarities and differences in the interpretation of F-ratios and the

proportion of variance due to the various main effects and interactions.

These problems have been addressed using the IIPFQC data as one example

by Steinheiser and Epstein (1978).

For this study, subjects, repetitions, and groups were treated as

random factors, while tables were treated as a fixed factor. It was

necessary to treat repetitions and groups as random factors since it

was desirable to consider this particular experiment as a random sample,

in time, of the infinite number of times a trainee's competency could be

assessed. Treating these factors as fixed would have required any in-

terpretations of the results to be restricted to the rather unrealis-

tic and constrained situation described by this study. On the other

hand, the tables were chosen by the Military Police School as its best

test of marksmanship. Particularly for a criterion-referenced test

where domain specification is so crucial, one must be careful not to

over generalize. Therefore, the 8 tables are considered a fixed factor

in the ANOVA.

When a large number of degrees of freedom is present in testing

F-ratios, it is not difficult to show that main effects and interactions

are statistically significant. Since this was the case for this study,

the proportion of total variance accounted for by each factor and inter-

action was computed. The results of the ANOVA were considered both in

terms of F-ratios and proportion of variance accounted for by each

sain effect or interaction.

Because of the mix of fixed and random factors in the ANOVA, it

ws necessary to compute quasi-F ratios and adjusted values for the

• ' 4
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degrees of freedom. Procedures found in Winer (1971) were used to per-

form the computations. Proportions of total variance accounted for by

the main effects and interactions were computed according to procedures

published by Dodd and Schultz (1973) and by extending the Cronbach,

Gleser, Nanda, and Rajaratnam (1972) procedures for computing variance

components used in generalizability studies. The numerical values found

using the relatively easy to apply Cronbach, et al. procedures were

identical to the Dodd and Schultz results.

Measurement Models

Skilled motor performance, such as that described by the MPFQC

pistol marksmanship task, should be analyzed by a continuous true score

model. Three of the continuous models discussed earlier, the proportion

correct, the binomial error, and the beta-binomial Bayesian models,

represent a logical progression of increasing complexity and use of

information. These models were compared empirically using the MPFQC

data. The Rasch model, although a continuous true score model, was not

used to analyze these data for several reasons. First, the Rasch

model's underlying conception of ability as a latent trait is different

from the definition of ability, shared by the other models, as the

probability of accomplishing an example of a given task. Thus, defin-

ing a meaningful basis of comparison between the two classes of measure-

ment models presents serious problems. Second, the use of the Rasch

model, or other latent trait models, presents practical problems, parti-

cularly in the area of estimating item parameters. In fact, the number

of subjects for whom data were collected may be too small to allow for

the estimation of stable item parmeters. Finally, how to apply latent
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trait theory, in general, and which latent trait model to apply in any

given instance, in particular, are matters of considerable current

debate. Since it is beyond the scope of this study to enter into that

debate, it was decided to limit subsequent empirical analysis to the

examples of the class of measurement models based on the properties of

the binomial probability distribution, the proportion correct model,

the binomial error model, and the beta-binomial Bayesian model.

The Proportion Correct Model

The proportion correct model is the simplest of the three, it is

also the most "pure" for criterion-referenced testing since no group

data are required for its implementation. Pass/fail criteria are based

on the statistical properties of the binomial distribution, the crite-

rion for mastery, and the amount of misclassification error that can be

tolerated. Given a value for the true ability, the test length, and a

criterion passing score, it is possible to compute the probabilities

that an individual with the given ability will pass or fail the test.

Expected levels of misclassification can be computed for a variety of

true abilities, test lengths, and criterion scores. The decision maker

must then choose the mix of these factors that best fits the particular

testing situation.

Since the HP school uses 70Z accuracy for its passing requirement,

a true ability of .70 was chosen as the criterion true ability for the

analyses conducted in this study. Table 3 shows the probability of* mis-

classification according to the proportion correct model as a function

of true ability and criterion score for the 10, 20, 40, and 80 round

subtests. For true abilities below .70, the table entry is the prob-

ability of a false positive decision. For true abilities at or above

All
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10 ROUND SUBTEST

P(FALSE POSITIVE) GIVEN P(FALSE NEGATIVE) GIVEN
CRITERION TRUE ABILITY TRUE ABILITY -

SCORE .50 .55 .60 .65 .70 .75 .80 .85 .90

ALL PASS 1.0 1.0 1.0 1.0 0 0 0 0 0

1 .999 1.0 1.0 1.0 0 0 0 0 0

2 .989 .995 .998 .999 0 0 0 0 0

3 .945 .973 .988 .995 .002 0 0 0 0

4 .828 .898 .945 .974 .011 .004 .001 0 0

5 .623 .738 .834 .906 .047 .020 .006 .001 0

6 .377 .504 .633 .751 .150 .078 .033 .010 .002

7 .172 .266 .382 .514 .350 .224 .121 .050 .013

8 .055 .100 .167 .262 .617 .474 .322 .180 .070

9 .011 .023 .046 .086 .851 .756 .624 .456 .264

10 .001 .003 .006 .013 .972 .944 .893 .803 .651

ALL FAIL 0 0 0 0 1.0 1.0 1.0 1.0 1.0

Table 3: Proportion Correct Model Probabilities of False Positive and
False Negative Misclassification Errors for a Variety of Test
Lengths, Criterion Scores, and True Abilities

_wow I.
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20 ROUND SUBTEST

P(FALSE POSITIVE) GIVEN P(FALSE NEGATIVE) NEGATIVE
CRITERION TRUE ABILITY TRUE ABILITY -SCORE .50 .55 .60 .65 .70 .75 .80 .85 .90

ALL PASS 1.0 1.0 1.0 1.0 0 0 0 0 0

1

2

3 1.0

4 .999 1.0

5 .994 .998 1.0

6 .979 .994 .998 1.0

7 .942 .979 .994 .998 0

8 .868 .942 .979 .994 .001 0

9 .748 .869 .943 .980 .005 .001 0

10 .588 .751 .872 .947 .017 .004 .001 0

11 .412 .591 .755 .878 .048 .014 .003 0

12 .252 .414 .596 .762 .113 .040 .010 .001 0

13 .132 .252 .416 .601 .228 .102 .032 .006 0

14 .058 .130 .250 .417 .392 .214 .087 .022 .002

15 .021 .055 .126 .245 .584 .383 .196 .067 .011

16 .006 .019 .051 .118 .762 .586 .370 .170 .043

17 .001 .005 .015 .044 .893 .775 .589 .352 .133

18 0 .001 .004 .012 .965 .909 .794 .595 .323

19 0 .001 .002 .992 .976 .931 .824 .608

20 0 0 .999 .997 .988 .961 .878

ALL FAIL 0 0 0 0 1.0 1.0 1.0 1.0 1.0

Table 3 (cont)
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40 ROUND SUBTEST

P(FALSE POSITIVE) GIVEN P(FALSE NEGATIVE) GIVEN
CRITERION TRUE ABILITY TRUE ABILITY

SCORE .50 .55 .60 .65 .70 .75 .80 .85 .90

ALL PASS 1.0 1.0 1.0 1.0 0 0 0 0 0

1

2

3

4

5

6

7

8

9

10 1.0

11 .999 1.0

12 .997 1.0

13 .992 .999 1.0

14 .981 ,997 1.0

15 .960 .991 .999 1.0

16 .923 .980 .997 1.0

17 .866 .959 .992 .999 0

18 .785 .923 .981 .997 0

19 .682 .867 .961 .992 .001 0

20 .563 .787 .926 .983 .002 0

Table 3 (cont)
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40 ROUND SUETEST (CONT)

P(FALSE POSITIVE) GIVEN P(FALSE NEGATIVE) GIVEN
CRITERION TRUE ABILITY = TRUE ABILITY -

SCORE .50 .55 .60 .65 .70 .75 .80 .85 .90

21 .437 .684 .870 .964 .006 .001 0 0 0

22 .318 .565 .791 .930 .015 .002 0

23 .215 .439 .689 .876 .032 .005 0

24 .134 .319 .568 .798 .063 .012 .001 0

25 .077 .214 .440 .695 .115 .026 .003 0

26 .040 .133 .317 .572 .193 .054 .008 0

27 .019 .075 .211 .441 .297 .103 .019 .001 0

28 .008 .039 .129 .314 .423 .179 .043 .004 0

29 .003 .018 .071 .205 .559 .285 .088 .012 0

30 .001 .007 .035 .121 .691 .416 .161 .030 .001

31 0 .003 .016 .064 .804 .560 .268 .067 .005

32 0 .001 .006 .030 .889 .700 .407 .135 .015

33 0 .002 .012 .945 .818 .563 .244 .042

34 0 .001 .004 .976 .904 .714 .393 .100

35 0 .001 .991 .957 .839 .567 .206

36 0 .997 .984. .924 .737 .371

37 0 .999 .995 .972 .870 .577

38 1.0 .999 .992 .951 .777

39 1.0 .999 .988 .920

40 1.0 .999 .985

ALL FAIL 0 0 0 0 1.0 1.0 1.0 1.0 1.0

Table 3 (cont)

w I : wpm 0 ..........
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80 ROUND SUBTEST

P(FALSE POSITIVE) GIVEN P(FALSE NEGATIVE) GIVEN
CRITERION TRUE ABILITY - TRUE ABILITY -

SCORE .50 .55 .60 .65 .70 .75 .80 .85 .90

ALL PASS 1.0 1.0 1.0 1.0 0 0 0 0 0

25 1.0 1.0 1.0 1.0 0 0 0 0 0

26 .999 1.0

27 .999 1.0

28 .998 1.0

29 .995 1.0

30 .991 .999 1.0

31 .984 .999 1.0

32 .972 .997 1.0

33 .954 .995 1.0

34 .937 .991 .999 1.0

35 .891 .983 .999 1.0

36 .843 .972 .998 1.0

37 .783 .954 .995 1.0

38 .712 .928 .991 1.0

39 .631 .892 .984 .999 0

40 .544 .844 .973 .998 0

41 .456 .785 .956 .996 0

42 .369 .714 .930 .992 0

43 .288 .633 .895 .986 .001 0

44 .217 .546 .848 .975 .002 0

Table 3 (cant)

• 4|

.. . .. . . . . . . . . .. . .1.



80 ROUND SUBTEST (CONT) 58

P(FALSE POSITIVE) GIVEN P(FALSE NEGATIVE) GIVEN
CRITERION TRUE ABILITY - TRUE ABILITY -

SCORE .50 .55 .60 .65 .70 .75 .80 .85 .90

45 .157 .457 .789 .959 .003 0 0 0 0

46 .109 .369 .717 .935 .006 0

47 .073 .288 .636 .900 .012 0

48 .046 .216 .548 .854 .021 .001 0

49 .028 .156 .458 .795 .036 .002 0

50 .016 .108 .369 .724 .059 .005 0

51 .009 .071 .286 .641 .092 .009 0

52 .005 .045 .213 .551 .137 .017 .001 0

53 .002 .027 .152 .458 .195 .029 .001 0

54 .001 .015 .104 .367 .268 .050 .003 0

55 .001 .008 .067 .282 .352 .080 .006 0

56 0 .004 .042 .207 .445 .124 .011 0

57 0 .002 .025 .145 .542 .182 .022 0

58 0 .001 .014 .097 .637 .255 .039 .001 0

59 0 .007 .061 .725 .343 .066 .003 0

60 0 .004 .037 .802 .440 .107 .006 0

61 0 .002 .021 .865 .543 .163 .013 0

62 0 -.001 .011 .913 .644 .238 .026 0

63 0 .006 .947 .736 .329 .048 .001

64 0 .003 .970 .816 .434 .084 .002

65 0 .001 .984 .879 .545 .138 .005

66 0 .992 .926 .654 .213 .012

Table 3 (cont)
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80 ROUND SUBTEST (CONT)

P(FALSE POSITIVE) GIVEN P(FALSE NEGATIVE) GIVEN
CRITERION TRUE ABILITY - TRUE ABILITY -

SCORE .50 .55 .60 .65 .70 .75 .80 .85 .90

67 0 0 0 0 .994 .958 .753 .309 .027

68 0 .998 .978 .836 .424 .054

69 0 .999 .989 .899 .548 .100

70 1.0 .995 .944 .670 .173

71 1.0 .998 .971 .779 .277

72 1.0 .999 .987 .866 .407

73 1.0 .995 .927 .554

74 1.0 .998 .965 .700

75 1.0 .999 .986 .823

76 1.0 .995 .912

77 1.0 .999 .965

78 1.0 .989

79 1.0 .998

80 1.0

ALL FAIL 0 0 0 0 1.0 1.0 1.0 1.0 1.0

Table 3 (cont)
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.70, the table entry is the probability of a false negative decision.

In interpreting and using Table 3, it is important to remember

that each misclassification probability refers only to the true ability

represented by the entries in any particular column of the table. For

example, for test length equals 10 items, true ability equals .70, and

criterion score equals 7, the false negative probability given in the

table is .350. This means that if all examinees had true abilities of

.70, approximately one-third of them would be expected to fail a ten

item test with a passing criterion score of seven correct. In most

cases the examinee group will not consist of individuals all of whom

have the same true ability. Therefore, in using Table 3, the decision

maker must consider a mix of abilities, and the expected false positive

and false negative misclassifications associated with that mix, in

choosing a criterion score.

In choosing criterion scores for subsequent analysis, the absolute

and relative misclassification probabilities for the range of true

abilities, .50 to .90, represented in Table 3 were simultaneously con-

sidered. The relative values of the false positive and false negative

error probabilities are Important since the losses associated with each

type of error are being treated as equal. The scores chosen should

yield the lowest absolute error probabilities and the closest relative

error probabilities across the range of ability levels considered.

The Binomial Error Model

The binomial error model builds on the basic foundation of the

proportion correct model by incorporating observed group data into the

decision making process. There is less subjective judgment in weighing

PR, /
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alternatives required by this approach than is the case for the propor-

tion correct model, however, the statistical model underlying it must

be appropriate. The binomial error model was implemented by completing

the following steps. First, the observed scores for each subtest were

analyzed to determine whether the distributions were statistically

significantly different from negative hypergeometric distributions.

This required computing the mean, variance, and Kuder-Richardson Formula

21 reliability for each subtest, and solving for the parameters of its

associated negative hypergeometric distribution using equations (19),

(20), and (21). A chi-square goodness of fit test was applied to de-

termine whether or not the model was appropriate for the data. Esti-

mated true scores corresponding to each observed score were then

computed using the regression equation shown in equation (22). The

criterion observed score was the lowest score that yielded an estimated

true score greater than or equal to .70. Table 4 shows the chi-square

probabilities that the observed scores. represent samples of scores from

negative hypergeometric distributions, the recommended criterion scores,

and the associated estimated true scores for each of the subtests.

To compute the expected misclassification under the binomial error

model the following procedure was employed. Since the overall true

score distribution is a member of the beta family, it was assumed that

the error of estimation around each estimated true score was also a

member of the beta family with a mean equal to the estimated true score

v2riance equal to awhere 02 is the estimated variance of

the true score distribution. The above equation is the analogue of the

usual equation for the variance of the error of estimate for classical

C
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CRITERION ESTIMATED CRITERION ESTIMATED
SUiTRST P (x2) SCORE T~tUI SCORE SUBTEST p(X2) SGOlF TRim roftw

TABLEll >.25 8 .756 TABLE15 >.03 6 .704

TABLE12 >.25 8 .731 TABLE16 >.05 7 .747

TABLE13 >.75 8 .716 TABLE17 >.90 6 .717

TABLE14 >.05 8 .748 TABLE18 >.10 5 .728

TABLE21 :.75 8 .757 TABLE25 >.75 7 .753

TABLE22 >.50 8 .749 TABLE26 >.50 7 .733

TABLE23 >.05 8 .715 TABLE27 >.05 7 .753

TABLE24 >.50 8 .762 TABLE28 >.25 4 .723

TABLE31 >.75 8 .754 TABLE35 >.50 6 .724

TABLE32 >.50 8 .762 TABLE36 >.98 7 .756

TABILE33 >.50 8 .742 TABLE37 >.25 6 .719

TAZLE34 >.25 7 .705 TABLE38 >.75 4 .718

BARD21 >.75 15 .717 EASY21 >.10 13 .729

HARD22 <.01 14 .720 EASY22 >.75 12 .714

BAID23 <.01 14 .719 EASY23 >.75 12 .704

1l.D24 <.01 14 .721 EASY24 >.95 13 .724

UARD25 >.10 15 .731 EASY25 >.98 12 .720

UARD26 >.25 15 .725 EASY26 >.75 11 .714

Table -4: Binomial Error Model X2 Probabilities that Subtest Scores
Represent Samples from a Negative Hypergeometric Distribution,
and 'Criterion Obemrved and Estimated True Scores

mI
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CRITERION ESTIMATED CRITERION ESTIMATED
SUBTEST P(X2 ) SCORE TRUE SCORE SUBTEST P(X 2 ) SCORE TRUE SCORE

MIX201 >.95 14 .723 MIX207 >.98 14 .720

MIX202 >.95 14 .728 MIX208 >.10 14 .716

MIX203 >.25 14 .719 MIX209 >.75 14 .729

MIX204 >.50 14 .719 MIX210 >.03 13 .710

MIX205 >.50 13 .700 MIX211 >.25 13 .711

MIX206 >.99 14 .720 MIX212 >.25 14 .730

HARD41 >.75 29 .708 EASY41 >.10 26 .710

HARD42 >.50 29 .711 EASY42 >.10 27 .718

HARD43 >.10 29 .716 EASY43 >.99 25 .701

MIX41 >.90 28 .717 MIX44 >.50 28 .711

MIX42 >.98 28 .712 MIX45 >.50- 27 .703

MIX43 >.25 28 .715 MIX46 >.25 27 .706

REP1 >.95 56 .709 REP3 >.25 55 .703

REP2 >.25 56 .708

Table 4 (cont)

1 !4
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regression. Given the mean and variance of a beta distribution one can

compute its parameter values, a and b by solving the following equations

simultaneously: It. - a/(a+b), a2 - ab/[(a+b+l)2(a+b+2)] (Novick and

Jackson, 1974, p.l13). This distribution describes the error of esti-

mation. The expected false negative rate for each failing score is the

area of the distribution above ability - .70. That is, the probability

that ability > .70 even though a decision to fail is implied by the

estimated true score. Similarly, the false positive rate for each

passing score is found by computing the area of the distribution below

ability - .70.

The Beta-Binomial Bayesian Model

The beta-binomial Bayesian model uses prior information about the

overall abilities of the examinees (or similar examinees) as its start-

Lug point for computing recommended criterion passing scores. The model

assumes that examinee abilities are distributed as a beta distribution.

Once that distribution is identified, by determining its parameter

values, then each examinee's observed score can be interpreted as an

indicator of the beta distribution which best describes the ability

group to which that individual belongs. This is simply because given a

prior ability distribution which is a member of the beta family,

B (a,b), and an observed score, x correct of a items, which is part of

a binomial distribution, the posterior ability distribution is also a

aimber of the beta family, B (a+x, bn-x). The mean of the posterior

ability distribution also provides a true ability estimate.

In order to use the model to find a criterion passing score, the

areas above and below the criterion true ability, in this case .70,

tt
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corresponding to the posterior ability distributions for each observed

score are computed. The observed score that provides a criterion pass-

ing score with equal false positive and false negative losses associated

with it is the lowest score for which the area of the posterior distri-

bution above the criterion ability is .50 (Novick and Lewis, 1974).

These areas can also be interpreted as misclassification probabilities.

If the observed score is below the criterion passing score, the

area under the curve above .70 is the probability of a false negative.

This is because, the area above .70 is the probability that the indivi-

dual's true ability is .70 or better, computed on a curve associated

with a fail decision. Conversely, if the observed score is at or above

the criterion passing score, the area under the curve below .70 is the

probability of a false positive decision. The results of the analyses

described above for these data are found in Table 5.

The prior ability distribution used for the analyses in this study

was obtained by asking MP school marksmanship instructors to estimate

the distribution of scores that would be obtained on the test by a

hypothetical group of thirty students. The group of eleven "experts"

were asked to fill out a form for each of the eight tables on the MPFQC

requesting them to estimate how many of the thirty hypothetical students

would get 0-1, 2-3, 4-5, 6-7, 8-9, or 10 hits. In the analysis, these

data were combined to yield an average prior estimate of an observed

score distribution on the MPFQC. Using results obtained by Lord and

Novick (1968, p.522), it is possible to relate the moments of the

observed score distribution to the moments of the underlying true beta

ability distribution:

-- - 'M
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10 ROUND SUBTESTS

PROBABILITY PROBABILITY PROBABILITY
SCONZ (ABILITY ..7) SCORE (ABILITY > .7) SCORE (ABILITY j.7)

0 .002 4 .042 8 .713

1 .002 5 .118 9 .888

2 .004 6 .266 10 .975

3 .013 7 .482

20 ROND SUBITESTS

PROBAILITY PROBABILITY PROBABILITY
SCORE (ABILITY > .7) SCORE (ABILITY Z,.7) SCORE (ABILITY > .7)

0-6 .002 11 .091 16 .815

7 .003 12 .182 17 .917

8 .006 13 .317 18 .972

9 .016 14 .487 19 .993

10 .041 15 .664 20 .999

Table 5: Beta-Binomial ayesisan Model Probabilities that Ability Z .70
as a Function of Observed Score and Prior Distribution:
Prior Based on All MIMQC Tables

-TINS
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40 ROUND SUBTESTS

PROBABILITY PROBABILITY PROBABILITY
SCORE (ABILITY a.7) SCORE (ABILITY > .7) SCORE (ABILITY > .7)

0-17 .002 25 .160 32 .911

18 .003 26 .250 33 .956

19 .004 27 .363 34 .981

20 .007 28 .491 35 .993

21 .014 29 .622 36 .998

22 .028 30 .742 37 .999

23 .053 31 .840 38-40 >.999

24 .096

80 ROUND SUBTESTS

PROBABILITY PROBABILITY PROBABILITY
SCORE (ABILITY >.7) SCORE (ABILITY Z..7) SCORE (ABILITY > .7)

0-41 .002 52 .170 61 .885

42-43 .003 53 .235 62 .927

44 .005 54 .313 63 .956

45 .007 55 .400 64 .975

46 .012 56 .494 65 .987

47 .019 57 .588 66 .994

48 .032 58 .679 67 .997

49 .051 59 .761 68 .999

50 .079 60 .830 69-80 >.999

51 .118

Table 5 (cont)
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10 ROUND SUBTESTS 
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PROBABILITY PROBABILITY PROBABILITY
SCORE (ABILITY Z .7) SCORE (ABILITY > .7) SCORE (ABILITY > .7)

0-1 <.001 5 .069 8 .511

2 .001 6 .161 9 .714

3 .007 7 .312 10 .871

4 .024

20 ROUND SUBTESTS

PROBABILITY PROBABILITY PROBAB1. 'TY
SCORE (ABILITY >.7) SCORE (ABILITY .7) SCORE (ABILITY . 7)

0-6 <.001 11 .056 16 .672

7 .001 12 .116 17 .811

8 .003 12 .213 18 .909

9 .009 14 .448 19 .965

10 .024 15 .509 20 .989

40 ROUND SUBTESTS

PROBABILITY PROBABILITY PROBABILITY
SCORE (ABILITY > .7) SCORE (ABILITY >.7) SCORE (ABILITY > .7)

0-18 <.001 26 .179 34 .953

19 .001 27 .271 35 .979

20 .003 28 .483 36 .992

21 .007 29 .507 37 .997

22 .016 30 .632 38 .999

23 .034 31 .746 39 >.999

24 .063 32 .839 40 >.999

is .110 33 .908

• (ease): Prior Based on Hard MPFQC Tables
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10 ROUND SUBTESTS 69

PROBABILITY PROBABILITY PROBABILITY
SCORE (ABILITY > .7) SCORE (ABILITY _ .7) SCORE (ABILITY > .7)

0-1 .001 5 .148 8 .788

2 .003 6 .423 9 .935

3 .015 7 .560 10 .991

4 .053

20 ROUND SUBTESTS

PROBABILITY PROBABILITY PROBABILITY

SCORE (ABILITY Z.7) SCORE (ABILITY > .7) SCORE (ABILITY > .7)

0 <.001 11 .110 16 .859

1-6 .001 12 .215 17 .944

7 .002 13 .365 18 .984

8 .006 14 .545 19 .997

9 .019 15 .721 20 >.999

10 .049

40 ROUND SUBTESTS

PROBABILITY PROBABILITY PROBABILITY
SCORE (ABILITY Z .7) SCORE (ABILITY > .7) SCORE (ABILITY > .7)

0 <.001 24 .110 31 .868

1-18 .001 25 .183 32 .930

19 .003 26 .280 33 .968

20 .007 27 .401 34 .987

21 .015 28 .533 35 .996

22 .032 29 .663 36 .999

23 .061 30 .778 37-40 >.999

Table 5 (cont): Prior Based on Easy MPFQC Tables
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I=i/n, 
(29)

a2 _ 1/[n(n-1)] [a 2 _ (l/a)Px(n-v ) ] (30)

where UB is the mean of the beta distribution, is the variance of the

beta distribution, U x is the mean of the observed score distribution,
2
a x is the variance of the observed score distribution, and n is the

number of test items. These same equations were used to compute the

moments, and subsequently the parameters, of the prior estimated beta

distribution. The estimated observed score distribution is described

in Table 6. The resulting prior beta distribution was B (2.797, 1.498)

for the whole test. The prior distribution for the four hard tables was

B(4.654, 3.534). The prior distribution for the four easy tables was

B(2.424, 0.878).

Comparing the Models

The models were compared on the basis of the accuracy of the master/

nonmaster classifications that followed from each model's recommended

criterion passing score and the accuracy of each model's estimated true

scores. Two summary statistics were computed for each subtest to

assess the accuracy of the estimated true scores. An absolute discre-

pancy index was defined and computed as

k

iE1(ETij-Ti) (31)

where ETij is the estimated true score for person i on subtest J, Ti is

the criterion true score for person i, and k is the number of persons.

A squared discrepancy index was defined and computed as

k
E (L- -Ti) 2 . (32)

i- I ii g
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AVERAGE PREDICTED FREQUENCIES
SCORE TABLE1 TABLE2 TABLE3 TABLE4 TABLE5 TABLE6 TABLE7 TABLE8

0-1 1.31 1.09 1.45 1.18 1.18 2.36 .91 .36

2-3 4.18 2.55 3.91 2.42 1.27 2.36 .82 .55

4-5 8.89 8.45 10.00 8.13 5.73 5.00 1.69 .73

6-7 10.20 10.45 9.73 11.04 10.91 8.46 9.04 2.18

8-9 4.52 6.64 3.73 6.45 9.36 10.00 10.39 7.91

10 .89 .82 1.18 .78 1.55 1.82 7.15 18.27

AVERAGE PREDICTED SCORE (ALL TABLES): 6.51

PREDICTED VARIANCE (ALL TABLES): 6.13

PRIOR BETA DISTRIBUTION (ALL TABLES): B(2.797,1.498)

AVERAGE PREDICTED SCORE (HARD TABLES): 5.68

PREDICTED VARIANCE (HARD TABLES): 4.86

PRIOR BETA DISTRIBUTION (HARD TABLES): B(4.654,3.534)

AVERAGE PREDICTED SCORE (EASY TABLES): 7.34

PREDICTED VARIANCE (EASY TABLES): 6.03

PRIOR BETA DISTRIBUTION (EASY TABLES): B(2.424,0.878)

Table 6: Expected Examinee Performance on the Military Police
Firearms Qualification Course and Implied Prior Beta
Distributions
(Data Represents Opinions of 11 Military Police School
Instructors)
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In order to deteLas thia classification accuracy, a series of 2x2

tables showing the relationship between the criterion master/nonmaster

decisions based an the 240 round total teat or the 120 round hard and

easy tests amd the subtest .eter/nomsster decisions based on each re-

comned criterion score were constructed. Figure 2 describes the

properties of the cells and the marginals of such a table. The proba-

bility of a false positive equals P(pass subtest and nonmaster), the

probability of a false negative equals P(fail subtest and master).

Tables such as that in Figure 2 suuarize more detailed tables

which relate each score on a subtest to the true master/nonmaster

classification. The probability of passing a subtest is actually the

sum of the probabilities of passing the subtest for each score above

the criterion. A similar relationship exists for failing scores. These

relationships can be written

n
P(pass subtest) - E P(obtain score x) - (33)

xc

n
E P(obtain score x and master)+

xWc

n
X P(obtain score x and nonmaster),

i-c

c-1
P(fail subtest) E 0 P(obtain score x) = (34)

C-1

z P(obtain score x and master) +
x-0

C-1
z0 P(obtain score x and nonmaster),

where, c is the criterton passing score and n is the number of items on

the subtest.

tA- -l r
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"1TRUE" CLASSIFICATION

MASTER NON MASTER

PASS SUBTEST PASS StYBTEST
PASS and and PASS SUBTEST

StUhTEST MASTER NON MASTER
DECISION - ________ _______

FAIL SUBTEST FAIL SUBTEST
FAIL and and FAIL SUBTEST

MASTER NON MASTER

MASTER NON MASTER

P(PASS SUETEST) - P(PASS SUBTEST and MASTER) +
P(PASS SUITEST and NON MASTER)

P(FAIL SUBTEST) - P(FAIL SUETEST and MASTER) +
P(PAIL SUETEST and NON MASTER)

Figure 2: True Classification versus Subtest Classification
Contingency Matrix



Since it is of interest to compare the models with respect to the

difference in misclassification observed and the misclassification pre-

dicted by the model, as well as on the basis of absolute observed mis-

classification, some common index must be found. The previous discus-

sions of the characteristics of the models have shown that the model's

expected misclassification probabilities are conditional probabilities.

For the proportion correct model the expected misclassification is

obtained by summing the appropriate terms of P(obtain score x given

ability). For the binomial error and Bayesian models the misclassifi-

cation is computed as a function of P(ability given score x). These

conditional probabilities and the probabilities shown in Figure 2 are

related through the definition of conditional probability

P(AIB) = P(A and B)/P(B), and (35)

P(B(A) - P(A and B)/P(A), (36)

or in terms of a testing situation

P(masterlscore = x) = P(master and score-x)/P(score-x), (37)

-P(score - xlmaster) = P(master and score-x)/P(master), (38)

P(nonmasteriscore-x) - P(nonmaster and score-x)/P(score-x) (39)

and

P(scorexInonmaster)=P(nommaster and score-x)/P(nonmaster). (40)

The discussion above suggests the following scheme for comparing

the model's classification accuracies. First, empirically determine the

observed false positive and false negative probabilities by dividing the

number of subjects in the (PASS SUBTEST and NONMASTER) and the (FAIL

SUBTEST and MASTER) cells of Figure 2 by the sample size (-237). Since

these numbers will vary with the criterion passing score, any differ-

--.
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ences in the model's recommended passing scores will be reflected. For

the proportion correct model

P(obtain score x > criterionlability = nonmaster) - (41)

P(obtain score x . criterion and ability = nonmaster), and
P(ability = nonmaster)

P(obtain score x < criterionfability = master) - (42)

P(obtain score x < criterion and ability = master)
P(ability = master)

are the expected false positive and false negative rates. Therefore,

each conditional probability on the left of the equations above must be

multiplied by the probability of the ability in the sample. When these

terms are summed for all passing and failing scores, indices comparable

to P(pass subtest and nonmaster) and P(fail subtest and master) ace

obtained.

'For the binomial error and Bayesian models

P(ability - nonmasterj score > criterion) = (43)

P(ability - nonmaster and score I criterion), and

P(score > criterion)

P(ability - masteriscore < criterion) - (44)

P(ability - master and score < criterion)
P(score < criterion)

are the expected false positive and false negative rates. Therefore,

each conditional probability on the left of the equations above must be

multiplied by the probability of obtaining the score 'in the sample.

When these terms are summed for all passing and failing scores, indices

comparable to P(pass subtest and nonmaster) and P(fail subtest and

master) are obtained.

Nor"'
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4. RESULTS

The description of the results of this study is divided into three

sections. The first section addresses the MPFQC performance data. De-

scriptive statistics for the 240 round and 120 round criterion tests

and the sampled subtests are reported and the results of the ANOVA are

described. The implications of these results for interpreting the

characteristics of the MPFQC as a testing instrument are discussed.

The second and thitd sections address the comparisons of the

models. The second section refers to the results based on the 240 round

criterion test, and the third section refers to the results based on

the 120 round hard and easy criterion tests. The models are compared

with respect to their recommended criterion scores, the amount of mis-

classification observed, and the accuracy with which the models esti-

mated the amount of misclassification. The results relating to the

accuracy of the models in estimating examinee true scores are then

presented.

Characteristics of the MPFQC Performance Data

Results for the total test of 240 rounds indicate that it is a

reliable, moderately difficult test of marksmanship. The scores form a

degatively skewed single peak distribution (Figure 3). The mean score

is 184.591 (76.9%), the median is 185.800 (77.4Z), and the mode is

185 (77.12). The test scores have a variance of 614.336 and a KR-21

reliability of .934.

76
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The three 80 round tests (Repl, Rep2, Rep3) show similar character-

istics (Figure 4). Repl has a mean score of 60.447 (75.6%), a median

of 60.321 (75.4%), and a mode of 60 (75%). Its variance is 89.952 and

its KR-21 reliability is .846. Rep 2 has a mean score of 60.861 (76.1%),

median of 62.107 (77.6%), and mode of 62 (77.5%). Its variance is

107.824 and it has a KR-21 reliability of .875. Rep3 has a mean score

of 63.283 (79.1%), median of 63.906 (79.9%), and a mode of 64 (80%).

Its variance is 85.271 and its KR-21 reliability is .855. These data

suggest that the test became slightly easier with each repetition, per-

haps reflecting a practice effect. The change in difficulty was further

explored in an analysis of variance, described below, which showed that

the effect was not sufficiently large to disturb the interpretation of

the results.

If one breaks the data into the scores representing the sum of the

10 round hard subtests (Tables 11 - 14, 21 - 24, 31 - 34) and the sum

of the 10 round easy subtests (Tables 15 - 18, 25 - 28, 35 - 38), the

fact that the MPFQC is actually made up of two rather different tests

becomes obvious. The hard test of 120 rounds (Figure 5) has a mean of

77.253 (64.4%), median of 76.417 (63.7%), and mode of 61 (50.8%). Its

distribution has a slight positive skew. Its variance and KR-21 reli-

ability are 299.630 and .915 respectively. The 120 round easy test

(Figure 6) has a mean of 107.338 (89.4%), median of 109.909 (91.6%),

and mode of 114 (95%). Its distribution is negatively skewed, it has a

variance of 88.148, and its KR-21 reliability is .878. Further, cross-

tabulations of the pass/fail decisions based on the 120 round tests and

the total 240 round test show that no one who failed the easy test pass-

; .. -
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ed the hard test, no one who passed the hard test failed the easy LesL,

no one who failed the 240 round test passed the 120 round hard test, and

no one who failed the 240 round test failed the easy test, These data

suggest that the MPFQC is not measuring a unitary skill. Rather, there

appear to be two distinct skills being demonstrated. One is a general

ability to shoot accurately, regardless of the distance (from 7 to 35

meters) from the target. A second skill is demonstrated as an ability

to shoot accurately only at short distances (7 and 15 meters), without

that skill consistently being shown at the longer distances from the

target.

Table 2 summarizes the descriptive data for the 10, 20, and 40

round subtests. These data corroborate the results for the longer

tests. The subtests made up of the difficult tables are consistently

more difficult than those which represent a mix of the hard and easy

tables which are, in turn, more difficult than the tests made up ex-

clusively of the easy tables. The mean scores for the 10 round hard

subtests vary from 5.37 (53.7%) to 7.15 (71.5%), and the means for the

easy subtests vary from 8.23 (82.3%) to 9.76 (97.6%). For the 20 round

hard subtests the means vary from 12.26 (61.3%) to 13.54 (67.7%), for

the easy subtests they vary from 17.66 (88.3%) to 18.28 (91.4%), and

they vary from 14.68 (73.4%) to 15.88 (79.4%) for the mix subtests.

For the 40 round subtests the means are 25.08 (62.7%) to 26.8 (67%) for

the hard subtests, 35.36 (88.4%) to 36.52 (91.3%) for the easy subtasts,

and 29.96 (74.9%) to 30.76 (76.9%) for the mix subtests. These data are

very consistent within a type of subtest and show clear differences

4: - "a' " .
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between subtest types, regardless of the number of rounds included.

None of the ranges of means for different subtest types overlap. The

KR-21 reliabilities are consistently acceptable considering the rela-

tively short test lengths involved. The lowest reliabilities are .438

and .448 for two of the very easy 10 round subtests. Reliabilities as

high as .794 are found for the 10 round subtests. Twenty round sub-

test reliabilities vary from .551 to .778, and 40 round subtest reli-

abilities vary from .727 to .843. With the exception of the low reli-

abilities for some of the easy 10 round subtests, no particular patterns

for the reliability data are evident.

Figure 7 shows these data plotted as test characteristic curves.

The curves show the cumulative proportions of the examinees achieving

each score. The curves further illustrate the characteristics of the

MPFQC discussed thus far. That is, the curves are remarkably similar

to one another within a test type and clearly distinct between test

types. This is found regardless of test length. It is also clear from

the curves that the 80 round subtests and 240 round criterion test are

similar to the other mix subtests. The data also show that the 120

round hard and easy tests are similar to the other subtests of their

respective types.

In general, the MPFQC appears to be a reliable, easily interpre-

table measure of pistol marksmanship. When data from all eight tables

are considered in a composite test, the scores provide a general index

of marksmanship. A more fine grained index of markmianship ability is

available by considering scores from the hard and easy tables inde-

pendently.
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The ANOVA summary table for the MPFQC performance data is found in

Table 7. Table 7 also includes the proportions of total variance ac-

counted for by each of the main effects and interactions. All of the

main effects and most of the interactions were statistically significant

at the a = .05 level or beyond. These ANOVA results suggest that the

MPFQC is an unstable instrument producing results that would be diffi-

cult to generalize or interpret.

The results for the proportion of variance accounted for suggest a

different interpretation. This difference in possible interpretation

highlights the importance of carefully considering the meaning of stat-

istical significance, particularly when dealing with extremely powerful

tests. The largest source of variance is the error-term, accounting

for 39% of the total variance. An additional 25% of the variance is

accounted for by differences in the tables, and 10% more by individual

differences between the examinees. These three factors account for 74%

of the total variance. The other two main effects account for less than

1Z of the variance, and the interactions which have more than 12 of the

variance associated with then all include either Persons or Tables or

both aong the interacting factors. These results suggest that the

MPFQC is relatively stable across groups of shots and test repetitions

but that the homogeneity of the performance required by the different

tables is questionable. These results have the same general implica-

tions as those for the descriptive data and seen to be more reasonable

than the more extrem ANOVA F-ratio results.

Since all of the results suggest that differences between tables

are important, two further statistical tests were performed. The mean

A I
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Adjusted df
Source of Quasi Numer- Denom- Proportion
Variance df M.S. F-ratio ator inator of Variance

P (Persons) 236 12.80 3.93**** 272 705 .1027
S (Score Groups) 1 7.70 5.96** 1 25 .0006
T (Tables) 7 732.71 79.11**** 7 142 .2454
R (Repetitions) 2 34.75 12.55**** 2 87 .0041
PS 236 1.05 1.09 236 472 .0017
PT 1652 1.90 1.33**** 3100 4695 .0536
PR 472 2.45 2.52**** 472 472 .0444
ST 7 2.26 1.94* 13 75 .0007
SR 2 .40 .41 2 472 0
TR 14 4.31 2.82*** 4 99 .0032
PST 1652 .91 1.11 1652 3304 .0144
PSR 472 .97 untestable .0582
PTR 3304 1.14 1.38**** 3304 3304 .0769
STR 14 .68 .83 14 3304 0
PSTR 3304 .3939

*p < .05
**p < .025
***p < .01
****p < .001

Table 7: Analysis of Variance Summary Table and Proportion of Total
Variance Accounted For by Main Effects and Interactions
(Completely Crossed, Mixed Model: P, S, R Random, T Fixed)

.M | .
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score for the bard tables was compared to the mean score for the easy

tables using the Tukey test (Winer, 1971). The means are statisti-

cally significantly different (Q(8,42) - 36.93, p < .001). The Tukey

teat was also used to show that the mean score of the easiest hard

table is statistically significantly different from the mean score of

the hardest easy table (Q(8,42) - 23.24, p < .001). These results fur-

ther support the notion of a two part domain to describe the MPFQC.

Comparison of the Scoring Models: 240 Round Criterion

The models were compared on the basis of their recommended crite-

rion scores, the misclassification rates observed when subtest decisions

based on each model's recommended criterion score were compared to the

decisions based on the full 240 round test, the difference between the

observed misclassification rates and the misclassification rates that

are predicted by the statistical properties of each model, and the

accuracy of the models' subtest true score estimates compared to the

true score defined by the 240 round test. Table A s-marizes the re-

sults for the recommended criterion scores and the misclassification

rates. Table B summarizes the results of the true score estimations.

Table A also includes entries for an empirical best criterion score.

The empirical best criterion score was defined as that score which re-

sulted in the lowest total observed misclassification rate, where total

misclassification equals the sum of the false positive rate and the

false negative rate. Each factor considered in the comparison of the

models will be treated in turn.

Criterion Score

Since the proportion correct and Bayesian models do not use ob-
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served test data in their procedures for determining a criterion test

score, the criterion scores were constant for each test length. The

binomial error model procedure could suggest a different criterion

score for each testing occasion since it is dependent on the distri-

butions of the observed scores. The empirical best criterion score can

also vary for different testing occasions depending on the distribution

of observed scores.

For the 10 round subtests, the proportion correct and Bayesian

models' recommended criterion scores are 7 and 8 correct. The reason

for two scores is that there was no rationale for deciding that one

score was clearly more advantageous than the other. The lower score is

slightly more favorable if false negative errors are critical and must

be kept to a minimum, the higher score is slightly more favorable if

false positive errors are to be minimized. Multiple criterion scores

are also recommended for the longer subtests by the proportion correct

and Bayesian models for the same reason.

The recommended 10 round criterion scores for the binomial error

model vary from 4 to 8. In tha case of the hard subtests (Tables 11 -

14, 21 - 24, 31 - 34), the criterion score is 8 for all but one test

which has a criterion score of 7. For the easy tests (Tables 15 - 18,

25 - 28, 35 - 38), the criterion scores vary from 4 to 7. The lower

criterion scores observed for the easy tests never resulted in lower

total misclassification than a criterion score of 7 and usually re-

sulted in a higher total misclassification rate.

The empirical best criterion scores for the 10 round subtests

vary from 3 to 9. For the hard subtests, the criterion scores vary I
.A
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from 3 to 6, always lover than those suggested by the models. For the

easy subtests, a criterion score of 9 is empirically best in two cases.

For the other ten easy subtests, the empirical best criterion score is

either 7 or 8.

For the 20 round subtests, the proportion correct and Bayesian

models' recommended criterion scores are 14 and 15. Test difficulty

was, again, an important factor in the criterion score recommended by

the binomial error model and the empirical best procedure. For the 20

round hard subtests, the binomial error model criterion scores are 14

or 15, for the easy subtests the criterion scores vary from 11 to 13,

and for the mix subtests of intermediate difficulty, criterion scores

of 13 or 14 are recommended. The lower easy subtest criterion scores

did not lower the total misclassification rate and usually increased it

relative to the other models. However, in two cases for the mix sub-

tests, a criterion score of 13 did result in lower total misclassifica-

tion than criterion scores of 14 or 15. The empirical best criterion

scores for the hard subtests are lower than those recommended by the

models, varying from 8 to 10. For the easy subtests, the empirical

best criterion scores are 16 or 17, in all cases higher than the models'

criterion scores. For the mix subtests, the empirical best criterion

scores are closer to the models', varying from 12 to 14.

The 40 round subtest results show similar trends. The proportion

correct model's criterion scores are 27, 28, and 29. The Bayesian

model's criterion scores are 28 and 29. For the 40 round hard subtests,

the binomial error model's criterion scores are all 29, for the easy

subtests, they vary from 25 to 27, and for the mix subtests, criterion

t 
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scores of 27 or 28 are suggested. The lower criterion scores recom-

mended for the easy subtests did not result in decreased total mis-

classification. The empirical best criterion scores for the 40 round

hard subtests vary from 18 to 24, for the easy subtests they are 33 or

35, and for the mix subtests they are 27 in five cases and 26 in the

one remaining case.

The 80 round subtests closely resembled the mix subtests in their

test characteristics. The criterion scores reflect this similarity in

their homogeneity across procedures. The proportion correct model's

criterion scores are 54, 55 and 56. The Bayesian model's criterion

scores are 56 and 57. Binomial error model criterion scores are 55 or

56 and the empirical best criterion scores are 53, 54, or 56.

Overall, the criterion scores recommended by the models are remark-

ably similar to each other and close to what one would choose on purely

intuitive grounds. That is, given that the Military Police School uses

a criterion score of 70% hits for qualification, the criterion scores

would be 7, 14, 28, and 56 for the 10, 20, 40, and 80 round subtests,

respectively. The only differences in recommended criterion scores

among the models occurred with the binomial error model which tended to

suggest lower scores for the easy subtests. These results for the bi-

nomial error model reflect its use of empirical data in determining a

criterion score. However, the binomial error model's equation for

estimating true scores appears to have overestimated true scores for the

easy subtests to such an extent that decision making accuracy suffered.

Both the models' recommended criterion scores and the intuitively

appealing 70% hits criterion are relatively poor choices compared to the

-4W4
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empirical best criterion scores. For the hard subtests, the empirical

best criterion scores tended to be lower than the criterion scores sug-

gested by the models. Two factors help explain this result. First, the

nonmaster group tended to get very low scores on the hard subtests. The

masters, on the other hand, were able to achieve at least moderate

scores on the tests. Therefore, for low criterion scores, relatively

few masters were misclassified and most of the nonmasters were correct-

ly failed. As the criterion score was raised, relatively little gain

in reducing the false positive rate occurred but the false negative

rate climbed rapidly. The second factor contributing to lower empirical

best criterion scores on the hard subtests is the distribution of mas-

ters and nonmasters in the examinee group. Based on the full 240 round

test, 61 persons (25.7%) were normasters and 176 persons (74.3%) were

masters. Therefore, the maximum false positive misclassification rate

(which would occur for criterion score equals 0; all pass) is .257.

Since no false negative misclassifications can occur at that criterion

score, the total misclassification will also be .257. The maximum false

negative rate (at criterion score equals 11; all fail) is .743. Since

no false positives can occur when all persons fail, the total misclassi-

fication rate will also equal .743, Since the false positive rate has

a lower limiting value than the false negative rate by a considerable

amount, total misclassification will tend to be lower for cases where

the false positive rate is high relative to the false negative rate

than for cases where the false positive rate is low relative to the

false negative rate. For the hard subtests a relatively low criterion

score correctly failed a large proportion of the nomasters while cor-

____________________________•
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rectly passing most of the masters. By increasing the criterion score,

better decisions for the ornasters can be achieved but only by sacri-

ficing some of the correct classifications for masters. Since there

are far more masters than nonmasters in the examinee group, the best

strategy is to choose a lower criterion score if the goal is to keep

total misclassification to a minimum.

For the easy subtests, the models' suggested criterion scores

tended to be close to or equal to the empirical best scores. In con-

trast to the hard subtests, when the empirical best criterion scores did

differ from the models', they tended to be higher. All persons, regard-

less of their status on the 240 round test, tended to get high scores

on the easy subtests. Therefore, a relatively high criterion score was

needed to fail most of the nonmasters. Since masters tended to get high

scores, the cost in a high false negative rate that was found for the

hard subtests with relatively high criterion scores was not the case for

the easy subtests. Rather, the false negative rate remained low while

the false positive rate tended to approach its limiting value of .257.

Observed Misclassification Rates

The observed misclassification rates were defined as the propor-

tions of all classifications that were false positives or false nega-

tives. These were summed to yield total misclassification rates. In

addition, the ratios of the false positive to the false negative rates

were computed. Since the applications of the models were predicated

on an equal loss ratio of false positive to false negative errors, de-

sirable values for the false positive to false negative (FP:FN) ratio

are close to 1.0.

i.°
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The overall impression of the observed misclassification rates is

that they are high for the models and the empirical best approach re-

gardless of test length. Figure 8 shows each model's average observed

misclassification rate for each test length. The results show a clear

pattern in the false positive and false negative rates with respect to

test difficulty. In the case of the hard subtests, the false positive

rates are relatively low and tend- to decrease with increasing test

length. The false negative rates are high and show little change as

the test length increases. Total misclassification rates for the hard

subtests decrease slightly with increasing test length. In the case of

the easy subtests, these results are reversed. False positive rates

are relatively high and tend to increase slightly with increasing test

length. False negative rates are very low and decrease for the longer

subtests. There is little change in the total misclassification rates

as a function of test length. The moderately difficult mix subtests

produced the most reasonable results. Both the false positive and

false negative rates are relatively low, they are comparable to one

another, and they decrease with increasing test length. The total mis-

classification rates decrease as a function of increasing test length.

For all test lengths the total misclassification rates are lowest for

the mix subtests and highest for the hard subtests.

The misclassification rates for the empirical best criterion

scores show a different pattern than those of the models. In all

cases, the false positive rates are higher than the false negative

rates. The false positive and total rates decrease for the longer

tests, but the false negative rates remain relatively constant with'
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test length. There is no advantage in lower total misclassification

shown by the hard, easy, or mix tests. Although total misclassifi-

cation is always lover for the empirical best procedure than for the

models, this is not the case for the false positive and false negative

rates. False positive rates are higher for the empirical best proce-

dure for the hard and mix subtests, and the false negative rates are

higher for the easy subtests. The empirical best procedure achieved

the lowest total misclassification rates because neither the false

positive nor the false negative rates took on extremely high values.

Rather, moderate misclassification rates are generally the case for

this procedure.

The results for the FP:FN ratios show pattezns similar to those

for the observed misclassification rates. In all cases, the FP:FN

ratios tend to be considerably different than 1.0 and show relatively

little improvement with test length. The least desirable results were

generally obtained for the hard subtests and the most desirable results

were found for the mix subtests. An exception to this finding was that

for some of the easier subtests, the false negative rate fell to 0,

leading to undefined values for the FP: FN ratios. In general, the

FP:FI ratios obtained with the empirical best criterion score are

closer to 1.0 then those obtained with the models' criterion scores.

The analysis of the observed isclassification rates highlights

the similarities among the models rather then any differences between

them. There were very few differences between the models in the cri-

terian scores suggested. Where differences did appear they did not

teed to improve either classiflatlou accuracy or the F?:FlN ratio.
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None of the models compared well to the empirical best results. What

appeared to be the most important criterion in determining a best

criterion score was the test difficulty. Figures 9 and 10 show this

relationship. The data are the test difficulties and the best crite-

rion scores, expressed as a percent correct, for all test lengths. For

best criterion score defined as that with the lowest total misclassifi-

cation (Figure 9), the correlation was .887. For best criterion score

defined as that with the FP:FN ratio closest to 1.0 (Figure 10), the

correlation was .882.

Expected Misclassification Rates

The expected misclassification rate data are summarized in Figure

11. The expected misclassification rates for the empirical best proce-

dure were computed in the same way as for the proportion correct model

using the empirical best criterion scores in place of the proportion

correct criterion scores. The values for the expected misclassifica-

tion rates are comparable theoretically, all being algebraically equi-

valent to the probability of being a master and failing (false negative)

or the probability of being a nonmaster and passing (false positive).

However, the data used to compute these values for the proportion cor-

rect model and the empirical best procedure are different than those

used for the binomial error and Bayesian models. The expected mis-

classification rates for the proportion correct model and empirical

best procedures represent what would be expected given the distribution

of abilities according to the 240 round criterion test, a criterion

score, and the properties of the binomial distribution. In the case

of the binomial error and Bayesian models, the expected misciansifica-

• ' i',' : ' I4 , :
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tion rates are what would be expected given the distribution of obser-

ved scores, a criterion score, and the properties of the models. In

other words, the expected misclassification rates for the proportion

correct model and the empirical best procedure should be more sensitive

to the 240 round true ability distribution, while the binomial error

and Bayesian models' expected misclassification rates should be more

sensitive to the observed score distributions for each subtest.

Since the proportion correct model's criterion scores were the

same for the hard, easy, and mix subtests and the expected misclassifi-

cation rates were computed on the basis of the constant 240 round test

ability distribution, the expected misclassification rates are the same

for all three types of tests. The false positive expected misclassifi-

cation rate drops rapidly from the 10 to the 20 round subtests, and then

declines more gradually through the 40 round subtests to the 80 round

subtest results. The false negative rates fall more sharply across the

test lengths. The curve for the total expected misclassification rates

resembles the false negative curve.

These results illustrate the interaction between the binomial

probability model and the distribution of masters and nonmasters in the

examinee group. The average proportion correct score for the non-

masters on the 240 round test was .633, for masters it was .817. If

one computes false positive and false negative rates for these values

without adjusting for the relative proportions of masters and non-

masters in the group, the curves look similar to those actually obtain-

ed. However, the false negative rate is always less than the false

positive rate. The fact that there are approximately three times as

Sx 5
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many masters in the group causes the expected false negative rates for

these data to exceed the false positive rates for the 10 round and 20

round subtests. In the case of the 40 round and 80 round subtests,

the probability of a master failing gets sufficiently low that despite

the disproportionate number of masters in the group, the expected false

negative rates fall below the expected false positive rates.

The large differences between the expected misclassification rates

for the empirical best criterion scores and the proportion correct

model scores are indicative of the differences between the subtests and

the 240 round criterion test. In the case of the hard subtests, rela-

tively low criterion scores were required to produce the empirical best

total observed misclassifications. These low scores produced high ex-

pected false positive and extremely low expected false negative rates.

In the case of the easy subtests, these results were reversed. The

relatively high criterion scores which were necessary to produce the

empirical best total observed misclassification rates produced low

false positive expected rates and very high expected false negative

rates when applied to the 240 round test ability distribution. The ex-

pected misclassification rates for the moderately difficult mix sub-

tests, which closely resembled the 240 round test with respect to mean

scores and other test characteristics, are much closer to the proportion

correct curves.

The expected misclassification rates for the binomial error and

Bayesian models can also be understood in terms of the observed score

distributions for the different difficulty type tests. In the case of

the hard subtests, the median socres tended to be about 65% correct.

4-
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This is slightly below most of the criterion scores suggested by the

models. Therefore, the probability of observing scores at or above

criterion was slightly less than the probability of observing scores

below criterion. Since the expected false positive rate is proportion-

al to the probability of observing scores at or above criterion and the

expected false negative rate is proportional to the probability of

observing a score below criterion, one would expect the false positive

rate to be slightly lower than the false negative rate. That was, in

fact, the case. The same general line of reasoning explains the mis-

classification rates for the easy subtests. The median for the easy

subtests tended to be about 90% correct. The probability that an ob-

served score at least equaled the criterion score was greater than the

probability of observing a score less than the criterion. Hence, one

would expect, and the results show, the false positive rates to be

greater than the false negative rates. The differences in rates be-

tween the binomial error and Bayesian models are due to differences in

the probability distributions which describe the probability of an

individual being a master or nonmaster given the observed score. For

the Bayesian model these distributions are based on a prior distribu-

tion which is common to all observed socres. For the binomial error

model, these distributions reflect the observed score distribution of

each subtest.

For the mix subtests, the median scores tended to be about 75%.

Since this is slightly above most of the criterion scores, the probabi-

lity that a score was above criterion was slightly higher than the

probability that the score was below criterion. The implication, and

-.. 9
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what was observed, is that the false positive rate should be slightly

higher than the false negative rate. The curves for the binomial error

and Bayesian models were much more similar to the proportion correct

curves for the mix subtests than for the hard or easy subtests, re-

flecting the similarity of the mix subtests to the 240 round criterion

test.

Observed versus Expected Misclassification Rates

The difference between observed and expected misclassification

rates is one of the most important criteria on which to compare the

models. This is simply because it is more advantageous to employ a

scoring procedure that produces predictable results than one which does

not. If a statistical model represents the phenomena underlying the

data, then one would expect the model to produce predictable results,

and the differences between observed and expected misclassification

rates should be small. Such small differences would be expected re-

gardless of the extent of the observed misclassification. The results,

expressed as averages of the absolute values of the differences be-

tween observed and expected misclassification rates are summarized in

Figure 12.

For the hard subtests, all of the models and the empirical best

procedure overestimated the false positive misclassification rates.

The models' results are nearly identical and are indicative of rela--

tively accurate predictions. The empirical best procedure was much

less accurate and shows a steady and appreciable increase in overesti-

mation with increasing test length. The hard subtests' observed versus

expected difference results for false negative and total misclassifi-

! 2>
,.' $ .- =



113

0 4

* ~ *4-4

:::2 cc
____ .7:1. 1~I. . .cc

-0 I
+ .. .. . . . . . . . . . .it

r.4 60

. ~ ~ -. .. .- .

E-4 4J$

.. . ... . 4

I-ss

01.
.... . . ... t. ... E- 4

_ _ 4 . . .

4 .. . . . .. .

'41

WW w'

00

60

INI

4,JW. OR



114

7TT0-'no

-roI

ja *lo lsm u ~a - am s. ls



115

_____ ________ ___O

* ...... , 4.- ' V -

cc .t-.. ~ ~ ...........

I ~ - -... 4-

,~ 4 * * * **~*~* *~ I71 .-.

i3

D1<' z 7 7 - 0

0 E-4

H~L4
. ~i2 . .i~i~ .7 ---- c

ca 0 .
DWCA.

______ - -i41

0 0

*1-1

pop _ __ _ -



116

cation rates are the reverse of the false positive results. The empi-

rical best procedure shows relatively small differences and the three

models' differences are high. All of the procedures nearly always

underestimated the observed false negative misclassification rates.

However, the models nearly always underestimated the total observed

misclassification, while the empirical best procedure nearly always

overestimated it. For both the false negative and total difference

data, the proportion correct model performed better than the binomial

error or Bayesian models.

The easy subtests' results are much more varied than those for the

hard subtests. In the case of the false positive errors, all of the

procedures nearly always underestimated the observed error. The empir-

ical best procedure produced the most predictable results, followed by

the proportion correct model. The binomial error model performed most

poorly. In the case of the false positive errors, the results are re-

versed. All of the procedures nearly always overestimated the observed

error. The empirical best procedure performed very poorly. The pro-

portion correct model's results show relatively good prediction and the

binomial error and Bayesian models produced very good results. When

the differences were summed to reflect total misclassification, the

proportion correct model was best. The empirical best procedure did

well for the 10 round subtests but its performance rapidly declined

until it looked worst for the 40 round subtests. The binomial error

model was less predictable than the Bayesian model. All three models

tended to underestimate the total observed misclassification while the

empirical best procedure tended to overestimate it.
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The mix subtests' results are very encouraging. There is little

difference between the results for any of the procedures, and all per-

formed well. For the false positive errors the models overestimated

the observed error slightly more often than they underestimated it.

The empirical best procedure tended to overestimate the observed error.

All of the procedures tended to underestimate the observed false nega-

tive misclassification rates. In the case of the total misclassifica-

tion for the mix subtests, the models tended to underestimate the mis-

classification rates while the empirical best procedure tended to

overestimate them.

These data emphasize the complexity of the interactions between

the ability distribution as defined by the 240 round criterion test,

the observed score distributions, and the data used to compute expected

misclassification rates. The hard subtests were characterized by low

scores for all examinees, relatively high criterion scores for the pro-

portion correct, binomial error, and Bayesian models, and relatively

low empirical best criterion scores. The high criterion scores re-

commended by the models led to low observed false positive rates and

high false negative rates. In the case of the proportion correct model,

the expected false positive rate was also moderately low, so that the

differences between observed and expected false positive misclassifi-

cations were relatively small. The observed false negative rate was,

however, much higher than what would have been expected by the 240

round criterion ability distribution. Therefore, the differences be-

tween observed and expected false negatives for the proportion correct

model were large. Since the false positive rate was overestimated

now
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and the false negative rate was underestimated, there was some tendency

for the two effects to cancel each other in the differences between

observed and expected total misclassifications. The differences for

the false negative rates were, however, so large that the total differ-

ences were also large.

The results for the binomial error and Bayesian models have similar

values to those for the proportion correct model but for different

reasons. The low observed scores led to low expected false positive

rates since the frequency of passing scores, which contribute to the

false positive rate, was relatively small. Low observed scores can

also imply relatively low expected false negative rates if the majority

of scores are sufficiently low to insure that the portions of the

ability distributions for failing scores which etceed the criterion

ability (in this case .70) are small. The data illustrate these ef-

fects by the low expected false positive and false negative rates. The

difference data show relatively good predictions of false positive mis-

classification rates, poor predictions of false negative misclassifica-

tion rates, and, despite some canceling of the two types of error,

large differences between observed and expected total misclassifica-

tions.

The empirical best criterion scores for the hard subtests were

lower than those of the models. This led to higher observed false

positive and lower observed false negative rates. When the low crite-

rie scores were applied to the 240 round criterion ability distribu-

tion, high false positive and low false negative rates were predicted.

TWs led to larger differences between the observed and expected false

TA
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positive rates than were the case with the models, but considerably

smaller differences between observed and expected false negative and

total misclassification rates.

The easy subtests were characterized by high scores, few differ-

ences in the models' criterion scores, and slightly higher empirical

best criterion scores. Although the models' criterion scores were

relatively high, they were not high enough to prevent high observed

false positive rates, but the observed false negative rates were low.

The proportion correct model produced moderate values for both the

expected false positive and false negative rates. The expected false

positive rate underestimated that observed to almost the same extent

that the expected false negative rate overestimated false negative

misclassifications. The false positive and false negative difference

data are thus very similar, and the relatively small differences be-

tween observed and expected total misclassifications reflect the ten-

dency for the two types of error to cancel one another.

The low expected false negative rates found for the binomial error

and Bayesian models are due to the relatively low frequency of failing

scores observed with the easy subtests. The high scores also produced

relatively low expected false positive rates because the portions of

the ability distributions associated with passing scores which were

below the criterion ability were small. Low expected false positive

and false negative rates led to large differences between observed and

expected false positive rates and very small differences between ob-

served and expected false negative rates. The differences in observed

and expected total misclassifications are almost entirely accounted

71
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for by the false positive differences.

The slightly higher empirical best criterion scores on the easy

subtests led to lower observed false positive and higher observed false

negative rates than those found for the models. When applied to the

240 round criterion ability distribution, these relatively high crite-

rion scores also produced lower expected false positive rates than the

models but the differences between the observed and expected rates were

similar to the models' differences. The expected false negative rates

associated with the higher empirical best criterion scores were much

higher than those found for the models, leading to large observed ver-

sus expected differences. The false negative results are also reflected

in high expected total misclassification rates and large differences

between observed and expected total misclassifications.

The differences between observed and expected misclassifications

found for the models on the easy subtests illustrate the importance of

considering the relative importance of false positive and false negative

errors. The models tended to underestimate false positives and over-

estimate false negatives. While the models were comparable with re-

spect to false positives, the binomial error and Bayesian models pre-

dicted, accurately, very low false negatives while the proportion cor-

rect model was overly conservative. When the errors in prediction were

sumed to produce the error in predicting total misclassification, the

values for the binomial error and Bayesian models were similar to those

obtained for the false positives. In the case of the proportion correct

modal, however, the false positive and false negative results tended to

cancel one another producing lower differences than the other two

Vt
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models. Thus, in addition tc considering :ie costs of false positive,

false negative, and total misclassification errors, decision makers

must consider which type or types of errors must be most accurately

predicted.

The mix subtests' are more like what one would desire in a crite-

rion-referenced test. Observed misclassification errors were modest

and there was good agreement between observed and expected error rates.

There was also little difference in the results for the different pro-

cedures. These results imply that the nature of the items included on

a test, particularly the similarity between the test and the domain to

which one would like to generalize, is one of the most critical factors

in evaluating a test. The hard and easy subtests were not good repre-

sentations of the overall domain of 240 rounds and none of the proce-

dures produced clearly satisfactory results. The mix subtests were

representative of the domain and all of the procedures worked well.

True Score Estimation

In addition to comparing the models on the basis of their charac-

teristics as aids to decision making, their accuracy in estimating true

scores was assessed. The results of this analysis are in Table B and

are summarized in Figures 13 and 14.

Figure 13 shows the average, per test, sum of the individual

examineent squared discrepancies between the true scores estimated by

the models on the basis of their subtest scores and their 240 round

criterion true scores. The data are broken down by test difficulty

and test length. An average discrepancy for each examinee of 20% of

the nuber of rounds on any given test would be reflected as a squared

A
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discrepancy index value of 9.48 (.202 x 237). Values for average dis-

crepancies of 15%, 10%, and 5% are 5.33, 2.37, and .59. The majority

of the average discrepancies for the hard and easy subtests thus fell

in the 15% to 20% range. Host of the discrepancies for the mix sub-

tests were in the 5% to 10% range. In all cases, the accuracy of the

true score estimates improved with increasing test length. The improve-

sent was most dramatic in going from the 10 round to the 20 round sub-

tests after which improvement was more gradual. For all three models,

the true score estimates were most accurate for the mix subtests and

least accurate for the hard subtests. The squared discrepancies for

the proportion correct model estimates were always higher than those

for either of the other models. The binomial error and Bayesian

models were very similar in their results. However, the Bayesian model

tended to be slightly less accurate for the hard and mix subtests while

the binomial error model was slightly less accurate for the easy sub-

tests.

Figure 14 shows the average, per test, of the absolute values of

the sum of the absolute differences between the true scores estimated

by each model and the 240 round true scores. The absolute discrepancy

value indicates either that the discrepancies were small in all cases

or that the sum of the discrepancies for individuals whose true scores

were overestimated was close to the sum of the discrepancies for indi-

viduals whose true scores were underestimated. The average absolute

discrepancies tended to be relatively constant for all test lengths,

with the exception of those for the Bayesian model on the easy sub-

tests which increased as test length increased. In all cases, the

W. -r
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mix subtests produced less bias in estimation than the hard or easy

subtests. In all cases, the models underestimated true scores for the

hard subtests and overestimated true scores for the easy subtests. For

the mix subtests, the average absolute discrepancy, maintaining the

sign, across all test lengths was .0003 for the proportion correct

model, -.0143 for the binomial error model, and -3.801 for the Bayesian

model. These data indicate almost no bias for the proportion correct

model, a slight tendency for the binomial error model to underestimate

true scores, and a more appreciable bias towards underestimating true

scores in the case of the Bayesian model. The amount of bias for the

proportion correct model was nearly identical to that for the binomial

error model for all types of tests and all test lengths. The Bayesian

model produced results similar to the other models for the hard sub-

tests, it tended to be less biased for the easy subtests, and it

tended to be more biased than the other models for the mix subtests.

These data imply that the Bayesian model tended to produce true

score estimates that were lower than those of the proportion correct

or binomial error models. The differences were negligible for the

hard subtests, but the tendency to produce lower true score estimates

is reflected in the lower overestimation found with the easy subtests

and the greater underestimation found for the mix subtests.

Comparison of the Scoring Models:
120 Round Hard and Easy Criteria

The analyses conducted to compare the models based on their

characteristics relative to the total skill domain described by the

240 round criterion test were repeated for the 120 round hard and easy

subdomains. The results are described in this section. Since the

O 4'
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analyses based on the subdomains were intended primarily to assess the

models when the subtests were close approximations to the criterion

domain, only the hard subtests were compared to the 120 round hard

criterion test. Similarly, the easy subtests were compared only to the

120 round easy criterion test. Table C summarizes the results for the

recomended criterion scores and the misclassification rates. Table D

summarizes the results of the true score estimations.

Criterion Score

There were no changes for these analyses in the proportion correct

model's criterion scores from those used for the analyses based on the

240 round test. This is because the procedure for choosing criterion

scores using the proportion correct model is not dependent on any in-

formation outside of the binomial probability tables (see Table 3). The

proportion correct model's recomwended criterion scores are 7 and 8 for

the 10 round subtests, 14 and 15 for the 20 round subtests, and 27, 28,

and 29 for the 40 round subtests.

The binomial error model's recommended criterion scores are based

on the observed score distribution for each testing occasion. Since

only the criterion was changed from the 240 round domain to the 120

round hard or easy subdomain, for these analyses, without disturbing

the observed score distributions of the subtests, there were no changes

in the criterion scores :rom those for the analyses based on the 240

round criterion. The binomial error model's recommended criterion

scores are 8, for eleven of the 10 round hard subtests, and 7, for the

remaining 10 round hard subtest, 14, for three of the 20 round hard

subtests, and 15, for the other three 20 round hard subtests, and 29,
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for all three 40 round hard subtests. The 10 round easy subtests'

criterion scores are 4 in two cases, 5 in one case, 6 in four cases,

and 7 in the remaining five cases. Criterion scores for the 20 round

easy subtests are 11 in one case, 12 in three cases, and 13 in two

cases. For the 40 round easy subtests, the criterion scores are 25,

26, and 27.

The criterion scores recommended by the Bayesian model did change.

The prior distributions used for the analyses based on the 120 round

subdomains were the distributions of scores for the hard or easy MPFQC

tables included in each subdomain that were expected by the Military

Police School staff. The hard prior distribution suggested that the

trainees' abilities were lower than those suggested by the prior dis-

tribution based on all of the MPFQC tables. With the Bayesian model,

lower prior ability estimates require higher observed scores for a

"pass" decision. Therefore, the Bayesian model's criterion scores are

higher for these analyses than for the 240 round criterion analyses.

The 10 round hard subtests have criterion scores of 8, the 20 round

hard subtests have criterion scores of 15, and the 40 round hard sub-

tests' criterion scores are 29. The easy prior distribution suggested

that the trainees' abilities were higher than those suggested by the

other prior distributions. Therefore, lower criterion scores are re-

quired to confirm a "pass" decision. The 10 round easy subtests'

criterion scores are 7, the 20 round easy subtests have criterion

scores of 14, and the 40 round subtests' criterion scores are 28.

The empirical best criterion scores also changed for these analy-

ses. This is because the criterion master or nonmaster status changed

t 1'
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with the change in criterion domain. For the 10 round hard subtests,

the empirical best criterion scores are 9 in nine cases, 8 in two cases,

and 7 in the remaining case. The 20 round hard subtests' empirical

best criterion scores vary from 13 to 16. The empirical best criterion

scores for the 40 round hard subtests are 28 in two cases and 32 in the

remaining case. These empirical best criterion scores for the hard

subtests reflect the distribution of masters and nonmasters according

to the 120 round hard test criterion. The nonmaster group consisted of

150 persons or 63.3% of the examinees. Thus, the maximum false posi-

tive rate was .633. The master group had 87 persons or 36.7% of the

group, yielding a maximum false negative rate of .367. Under these

conditions the best strategy for minimizing total misclassification

would be to minimize the likelihood of comumtting false positive errors.

The relatively high empirical best criterion scores demonstrate this

strategy.

The easy subtests' empirical best criterion scores clearly show

the importance of the true distribution of masters and nonmasters on

the choice of a criterion score. Only 5 trainees of 2.1% of the group

were classified as nonmasters by the 120 round easy criterion test.

Therefore, the maximum false positive rate was .021 and the maximum

false negative rate was .979. Under these conditions, total misclass-

ification can best be minimized by choosing a criterion score that

minimizes the false negative rate, in other words, a low criterion

score. In addition, because there were so few nonmasters and there

was little variability in their scores, several criterion scores were

often found to be low enough to insure very low false negative mis-

classification rates and equivalent total misclassification rates.
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For the 10 round easy subtests, the empirical best criterion

scores vary from 0 to 7, with multiple values being the rule rather

than the exception. The criterion scores for the 20 round easy tests

vary from 0 to 13. In three cases (Easy22, Easy25, and Easy26),

multiple empirical best criterion scores are found, all of which demon-

strate the strategy of minimizing false negative errors. In the other

three cases, a more moderate criterion score (10 to 13) served to pro-

vide very low, equally divided false positive and false negative errors.

The subtests with the more moderate criterion scores are much more

useful in discriminating between masters and nonmasters than are the

other subtests which were so easy that even with a criterion socre of

12 hits in 20 rounds (60%) all of the nonmasters passed. The 40 round

easy subtests' results repeat what was found for the 20 round easy sub-

tests. Easy43 is exceptionally easy, its empirical best criterion

scores are anything from 0 to 25, and for all of these criterion scores

all nonmasters as well as all masters passed. The other two 40 round

easy tests have single empirical best criterion scores of 25 in one

case and 26 in the other, which led to low and more equally divided

false positive and false negative misclassification rates. When there

were multiple empirical best criterion scores, only the data for the

highest score were included in the analyses of observed, expected, and

observed versus expected misclassification rates. The highest crite-

rion scores were chosen for subsequent analysis because they most close-

ly approximated the models' criterion scores and therefore are more

appropriate for comparisons than the more extreme scores,

511P owl o i MI, .
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Observed Misclassification Rates

The hard test observed misclassification rate data are summarized

in Figure 15. Observed misclassification rates for the hard subtests

are similar for the models and the empirical best procedure. False

positive and false negative misclassification rates average about .100

(102 of all classifications), with the false positive rate being slight-

ly higher. All misclassification rates tend to decrease with increasing

test length. These results are in sharp contrast to the results for the

hard subtests versus the 240 round criterion (Figure 8), where the

models showed extremely low false positive rates and extremely high

false negative rates, and where the models' results were very different

from the empirical best results. The empirical best procedure produced

the lowest total misclassification rates, the binomial error and Baye-

sian models' total misclassification rates are almost identical to each

other and slightly higher than the empirical best results. The pro-

portion correct model was slightly less effective in producing accurate

classification than the other two models. The results for the FP:FN

ratios are closer to 1.0 than were found for the hard subtests versus

the 240 round criterion and no procedure stood out as being superior

to the others in producing FP:FN ratios close to 1.0.

The easy subtest observed misclassification rate data are summar-

ized in Figure 16. The false positive rates are very low and similar

for all of the procedures. The empirical best false positive observed

eclassification rate is slightly higher for the 10 round easy sub-

tests, reflecting the tendency to allow the false positive rate to rise

to its maximum value in order to minimize false negatives. The models'
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moderately high criterion scores insured that there were very few false

positive errors. The false negative misclassification rates show more

variation among the procedures. As expected, the empirical best false

negative rates are lowest. The binomial error model's criterion scores,

which were lower than those of the other two models, produced the next

lowest false negative rates and the proportion correct model, with the

highest criterion scores, has the highest false negative rates. The

total observed misclassification rates closely approximate the false

negative results.

The easy subtests' false positive and total misclassification

rates are considerably lower than the results obtained with the 240

round criterion (Figure 8). However, the large number of 120 round

criterion masters produced a large pool of individuals for whom false

negative misclassifications could occur. This resulted in higher false

negative rates than those observed with the smaller master pool asso-

ciated with the 240 round criterion.

The FP:FN ratios for the easy subtests are, in many cases, unin-

terpretable due to the absence of any misclassifications. Values of

0 for the false positive or false negative misclassification rates led

to FP:FN ratios of 0 or unidefined. Comparing the absolute differences

between the false positive and false negative rates for the models and

the empirical best procedure, however, shows the advantage of the empi-

rical best strategy in producing relatively equivalent false positive

and false negative misclassification rates. For the most part, the

models' criterion scores produced very few false positive misclassi-

(fcatloiis but many fal.e negative mieclassifiations. The empirical
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beat criterion scores produced low misclassification rates for both

types of errors.

Expected Misclassification Rates

The hard subtest expected misclassification rate data are summar-

ized in Figure 17. The easy subtest data are in Figure 18. Both sets

of data indicate a high degree of similarity among the models and the

empirical best procedure. Expected misclassification rates are gener-

ally low and tend to decrease with increasing test length. Differences

between the procedures and between the hard and easy subtests' results

are due to differences in the procedures' criterion scores and the mix

of masters and nonmasters in the criterion subdomains.

For the hard subtests, the expected false positive rates are lowest

for the binomial error model and highest for the proportion correct

model. The expected false negative results are the reverse, the lowest

false negative expected misclassification rates are found for the pro-

portion correct model and the highest for the binomial error model.

The binomial error model produced the lowest expected total misclassi-

fication rates. The proportion correct model produced the highest

total expected misclassification rates for the 10 round hard subtests,

but then produced results almost identical to the Bayesian model. The

empirical best criterion scores were higher than those for the models

on the 10 round hard subtests, producing low expected false positive

rates and high expected false negative rates. The empirical best cri-

terlon scores were similar to the models' on the 20 round hard sub-

tests, as are the expected misclassification rates. For the 40 round

hard subtests, the one high empitical best criterion score is reflected

-A
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in a relatively low expected false positive rate and a relatively high

false negative rate. The total expected misclassification data for the

empirical best procedure closely parallel the data for the models. This

represents a canceling out of the extreme false positive and false

negative values.

For the easy subtests, the proportion correct model had higher

criterion scores than either of the other models. This is reflected in

low false positive and high false negative expected misclassification

rates relative to the results obtained for the other models. The gen-

erally lower criterion scores found for the binomial error model are

reflected in relatively high expected false positive rates, but the

effect disappeared in the very low expected false negative rates. The

empirical best and Bayesian results are very similar for the 20 round

and 40 round easy subtests. However, the empirical best expected mis-

classifications for the 10 round subtests are lower than those for the

Bayesian model. With respect to total expected misclassification, the

highest values were found for the binomial error model followed by the

proportion correct and Bayesian models. The empirical best total ex-

pected misclassification rates are lower than those of the models.

The expected misclassification rates for the easy subtests are

lower than those for the hard subtests. This is partly due to the

difficulty of the tests and partly due to the relative proportions of

masters and nonmasters as defined by the 120 round subdomains. The

small proportion of nonmasters in the 120 round easy subdomain explains

the very low expected false positive rates. However, this would also

lead one to expect to find high expected false negative rates. This

I
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was not the case for the binomial error and Bayesian models because the

score distributions had few low scores and few examinees failed the easy

subtests. Therefore, the expected false negative misclassification

rates, which are proportional to the observed failing rates, were cor-

respondingly low. The proportion correct model had higher expected

false negative rates than the other models, but the examinees' abili-

ties as defined by the 120 round easy criterion test were sufficiently

high that relatively few masters would be expected to fail. Thus, the

expected false negative rates for the easy subtests were lower than

those for the hard subtests. The empirical best criterion scores were

lower than those of the models producing the very low expected false

negative rates for the easy subtests.

Observed versus Expected Misclassification Rates

The data describing the differences between the observed and ex-

pected misclassification rates for the hard subtests are summarized in

Figure 19. Figure 20 summarizes the data for the easy subtests. The

absolute values for the differences are low for all of the models and

the empirical best procedure for false positives, false negatives, and

total misclassifications at all test lengths and test difficulties. The

differences also tend to decrease with increasing test length and tend

to reflect differences of about 5% of all classifications. The hard

subtests' observed false positive rates were underestimated in about 75%

of the cases. For the easy subtests, the observed false positive rates

were underestimated in about 30% of the cases. The hard subtests' ob-

served false negative rates were underestimated in slightly more than

502 of the cases. For the easy subtests, the false negative rates were

underestimated in about 65% of the cases. Total hard subtest misclassi-

4 w •
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fication was underestimated in about 90% of the cases and the easy sub-

tests' total misclassification was underestimated in about 50% of the

cases.

These results are markedly different from those for the 240 round

criterion (Figure 12). The differences beween observed and expected

misclassification rates were much lower when the subtests were matched

to their appropriate subdomain, and the clear differences between the

models evident in the data based on the 240 round criterion test dis-

appeared. The models performed well, observed misclassification rates

were not disturbingly high, and the models expected misclassification

rates were relately accurate representations of the observed rates.

True Score Estimation

Figures 21 and 22 summarize the results of the analyses to determine

the accuracy of the models' true score estimates based on the subtests'

scores relative to the true scores as defined by the 120 round hard

(Figure 21) and easy (Figure 22) subdomains. The curves for both the

hard and easy subtests are similar in shape, however, the squared dis-

crepancies between the estimated and criterion true scores are uniform-

ly lower in the case of the easy subtests. For both sets of data, the

proportion correct model's estimated true scores were slightly less

accurate than those of the other two models. The binomial error and

Bayesian models were nearly identical in the accuracy of their true score

estimates, with the binomial error model slightly more accurate for the

easy subtests and the Bayesian model slightly more accurate for the hard

subtests. In all cases, the true score estimation improved with in-

creasing test length, the most dramatic increase in accuracy coming
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between the 10 round subtests and the 20 round subtests. The proportion

correct model per person per test error rates were close to 20% for the

10 round hard subtests and between 10% and 15% for the 10 round easy sub-

tests. The 20 round subtests' results for the proportion correct model

show error rates of between 10% and 15% for the hard subtests and between

5% and 10% for the easy subtests. About 10% error in estimating true

scores was found for the 40 round hard subtests, and for the 40 round

easy subtests the error was slightly more than 5Z. The binomial error

and Bayesian models' results for the hard subtests show error rates of

between 10% and 15% for the 10 round subtests, error rates of about 10%

for the 20 round subtests and error rates of between 5% and 10% for the

40 round subtests. The easy subtests' results show error rates of about

10% for the 10 round subtests, between 5% and 10% for the 20 round sub-

tests. and close to 5% for the 40 round subtests. These results show

considerably better estimation of true scores than was the case when the

criterion true scores were based on the 240 round criterion (Figure 13).

The bias in estimating true scores, as reflected in the average ab-

solute discrepancies, was also less when the hard or easy subtests' true

score estimates were compared to the 120 round hard or easy criteria than

when the 240 round criterion was used (Figure 14). The relative degree

and direction of bias among the models, however, was unchanged. The

proportion correct and the binomial error models were almost identical

in the amount of bias in estimating true scores and the bias was very

small. In contrast to the results based on the 240 round criterion,

where the models consistently underestimated true scores for the hard

subtests and overestimated true scores for the easy subtests, the results

I NI -2 .
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based on the 120 round bard or easy criteria show little bias in either

direction for the proportion correct and binomial error models. The

ftyesian model's results indicate that it underestimated truze scores in

all cases. These results are consistenat with those found vith the 240

round criterion, however, the degree of bias was less vhen the 120 round

hard or easy tests defined the criterion true scores.



5. DISCUSSION

This study was designed with two primary purposes in mind. The

first was to investigate the characteristics of an example of an appar-

ently well constructed criterion-referenced test. The second was to

choose several statistical models that could be used to set criterion

scores and estimate true scores on a criterion-referenced test, and then

to compare those models on the basis of the accuracy of their implied

pass or fail decisions and the accuracy of their true score estimates.

In the process of carrying out the study, it became necessary to choose

or develop analysis techniques which would aid in accomplishing the

study's purposes. This section discusses the methods used, the results

of the analyses, and the conclusions implied by the results. Some sug-

gestions for practioners who must deal with criterion-referenced tests

are also offered.

In interpreting the results of this study, several features of the

data base must be considered. These data represent performance on a

well defined psychomotor task as measured by a relatively high reli-

ability performance test. While the general principles of criterion-

referenced test evaluation suggested by these data are probably gener-

alizable, it is impossible to say whether the specific quantitative

results or the relationships between the scoring models would be re-

produced with different tasks or tests. An important area for continued

research is to extend the methodology for empirically demonstrating the

145
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validity of statistical models for criterion-referenced testing to other

tasks and additional domains of learning.

Analysis of the MPFQC

The example of a criterion-referenced test which was chosen to pro-
j

vide the data base for this study is the Military Police Firearms Quali-

fication Course. The MPFQC was analyzed using simple, well known techni-

ques. The results clearly show that such techniques can provide useful

information for evaluating criterion-referenced tests.

The first step in the analysis of the MPFQC was to determine the

purpose of the test and to carefully define the skill domain that was to

be assessed by the test. This was accomplished by discussing the test

with its designers, staff members at the U.S. Army Military Police

School, and by studying the items included on the test. The MPFQC was

designed as a criterion-referenced performance test to certify military

trainees in .45 caliber pistol marksmanship. The items on the test,

referred to as tables, are shooting tasks fired from a variety of dis-

tances to the target and shooting positions. The tables were chosen to

represent the kinds of problems that military police face on the job.

Based on a consideration of job performance requirments, manpower needs,

and other demands of the school and the Army, the MP school decided that

in order to be certified, a trainee had to achieve a score of 35 hits in

50 shots.

This sort of analysis helps the evaluator understand why a test was

constructed and what its purposes are. It also identifies questions.

For example, on the MPFQC one question was why the maxzmm range was

35 meters. Another was why there were tables at 25 maters but none at

• . ... . . . .. ... . . . . .
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20 meters. the answers, in this case, involved practical considera-

tions. However, in other cases, such questioning can lead to decisions

to increase or decrease the number or types of items included on a test.

The conclusions of this analysis were that the MPFQC appeared to be a

well designed test, that the test items represented the skill domain

adequately, and that the results of testing should provide valid cri-

teria for certifying the skills of military police trainees.

The second step in the analysis of the NPFQC was to administer the

test to a representative group of trainees. For this study, the test

was modified to increase the number of rounds fired to a total of 240,

to be fired in three independent 80 round repetitions. In general, it

is best to administer any test which is being evaluated in a manner as

close as possible to its actual intended use. However, the modifica-

tions imposed on the HPFQC administration were required in order to

address the second purpose of this study, and it was felt that the mod-

ifications would not disturb either the properties of the test or the

certification process.

Third, the trainees' test scores were analyzed. Simple descriptive

statistics; means, medians, modes, variances, frequency distributions,

test characteristic curves, and reliabilities were computed on the total

240 round scores, the three 80 round repetition scores and the scores

obtained on each of the individual tables. The results of the analyses

indicated that overall the test was moderately difficult and reliable.

Taking advantage of the modification to the normal testing procedures,

it was also possible to compare the results of the independent repeti-

tions. These results indicated a slight improvement in scores over time.

i• I
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The uost dramatic result, however, was the unexpected finding that the

tables broke down into two clearly distinct groups. The four tables

shot at the longer ranges were nearly identical to one another with

respect to all of their descriptive statistics, but they were very dif-

ferent from the four tables shot at the shorter ranges which were, again,

very similar to each other. The implication is that the MPFQC is actu-

ally made up of two distinct tests, a long range hard test and a short

range easy test. Further, it became clear that by choosing tables

appropriately it was possible to provide three indices of marksmanship

ability. If one built a test consisting of all eight tables, then a

general marksmanship score could be obtained. A test made up exclusively

of short range tables would provide a score on short range marksmanship

skills, while a test made up exclusively of long range tables would pro-

vide a score on long range marksmanship skills. It was clear from the

score distributions that a high score on the short range test did not

necessarily imply that an individual would qualify on either the overall

test or the long range test.

These analyses and results suggest a number of lessons for crite-

rion-referenced test evaluators. First, simple descriptive statistics

and the classical K-21 reliability index can be meaningful. With re-

spect to reliability, one point must be made. It was expected that the

trainees would have real differences in their shooting abilities. There-

fore, the test results were expected to reflect true ability differences,

a requirment if classical reliability indices are to be interpreted in

their usual way. In some Instructional circumstances, such as when a

criterion-referenced test in to be used in a mastery learning setting,
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the assumption that examinees will differ with respect to their abili-

ties to accomplish the task being tested may not be valid. In such

cases, classical reliability indices will tend to have values close to

zero and may behave in unpredictable ways. Epstein and Knerr (1976)

discuss this effect and suggest that it may still be worthwhile to com-

pute reliabilities as long as one is careful in interpreting the results.

Simple descriptive statistics such as means and frequency distributions

are interpretable regardless of the true abilities of the examinees.

Their value lies primarily in flagging unanticipated results. In the

case of the MPFQC, these statistics indicated that the assumption that

the skill domain was homogeneous was in error, and they helped to define

the components of the two subdomains. They also uncovered the slight

practice effect. In other cases, such descriptive analyses can be used

to identify unusual test items or to Verify that instruction was uni-

formly effective throu-hout a skill domain.

Because of the design of the MPFQC administration for this study,

additional analyses that might either be impossible or optional under

other conditions were conducted. These included creating 20 and 40

round subtests and 120 round hard and easy criterion tests by sampling

results from the pool of 240 rounds, comparing the data from the tests

of differing length and difficulty, and performing an analysis of

variance. The results of these additional analyses confirmed the results

of the primary analyses.

The subtests were divided into groups of those containing only the

hard MPFQC tables, oni:' the easy MPFQC tables, and a mix of hard and

easy MPFQC tables. The comparisons of the tests showed that test
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eharacteristics were very similat within a difficulty type. but that thpy

were clearly distinct across difficulty types regardless of test length.

These results support the conclusions that the MPFQC represents two sub-

domains and that it is reasonable to consider the three interpretations

of the test scores.

The analysis of variance was used to assess the relative effects of

the factors which defined the test administration procedures on the vari-

ability of the observed scores. The results showed that the majority of

the observed variance in scores was due to individual differences between

trainees and to differences in the tables, confirming the results of the

other analyses. The analysis of variance also pointed out several im-

portant methodological considerations. The first dealt with the choice

of random and fixed factors in the analysis. Many examples of the use

of the analysis of variance technique treat subjects as the only random

factor, with all treatment or experimental factors treated as fixed

effects. For this study, that was not an acceptable design since it was

desired to generalize the results beyond the specific administration

constraints imposed by this study. The point is that if analysis of

variance techniques are chosen as one of the methods to evaluate a

criterion-referenced test, great care must be taken to insure that the

design and the designation of fixed and random factors are appropriate.

An additional methodological concern involves sample size. This study

included 237 subjects. The large sample size contributed to a very

large nmber of degrees of freedom in the analysis of variance error

ters. Under such conditions, rejection of the statistical null hypo-

thesis, even though experimental effects may be very small, is virtually

I.
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a certainty. Thus, one can find, as this study's results show, statis-

tically significant F-ratios for experimentally trivial results or for

factors which account for only a small proportion of total variance.

The point here is that care must be taken in interpreting analysis of

variance results and that subsequent analyses showing the proportion of

variance accounted for by each main effect and interaction are often

worth pursuing. This is particularly the case for statistically powerful

experiments.

The final step in the analysis of the MPFQC, as it would be in any

evaluation of a test, is to report the results and to suggest some areas

that might be considered in revising the test. The recommendations, in

this case, fall into two categories, interpreting the scores and revis-

ing the tables. With respect to score interpretation, the first point

is that the overall score achieved on the MPFQC can be misleading. The

analyses of the test showed that it is possible to achieve a high score

on the easy tables, achieve only a poor to moderate score on the hard

tables, and still be certified as a qualified marksman. This could re-

sult in allowing military police trainees to graduate from the school

who would not necessarily perform adequately on the job. Three alter-

natives seem feasible. One is to raise the criterion score so that good

performance is required on all tables in order to be certified. The se-

cond is to separately score the easy and hard tables to insure that ade-

quate performance is demonstrated at all ranges. The third alternative

is to have different criteria for the different tables. For example, it

may be that the accuracy required at short ranges is greater than that

required at long ranges. In this case, perhaps an 80% hit rate could be

required for the short range tables and a 60% hit rate could be adequate

OP
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for the long range tables. With respect to revising the tables, the

school should be made aware that the easiest of the easy tables, the one

fired at a range of 7 meters, is so easy that nearly everyone hits the

target all of the time. It therefore provides little or no information

in discriminating good marksmen from poor marksmen. One possible revi-

sion could be to eliminate the 7 meter table and replace it with one that

provides more useful information. A second alternative that might be

considered is redistributing the number of rounds fired from each table.

The recommended strategy in this case would be to decrease the number of

rounds fired from short range and increase the number fired from long

range. This would maintain the job relevancy of the overall test while

probably increasing the power of the test to discriminate between good

marksmen and poor marksmen.

Comparison of The Models

Setting criteria for passing criterion-referenced tests remains one

of the most controversial issues in the literature (see Glass, 1978, for

example). The problem has two important facets. First, one must decide

what level of achievement, in an abstract sense, is necessary. In other

words, if it were possible to test individuals in an ideal setting where

measurement errors, time constraints, poor test items, and other disturb-

ing factors did not exist, what levels of performance would be required?

The choice of such ideal achievement levels involves both subjective

judpments and consideration of what will be required of examinees who

are certified competent. For example, if one was concerned with achieve-

ment in American history, the ideal achievement level might represent

what a group of concerned citizens thought was necessary for good

-- or win,
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citizenship. If the history course was part of a sequence of courses,

then the ideal achievement level might also reflect the entry skills and

knowledges for the next course. In a more job related setting, the

ideal achievement level for an industrial assembly task might reflect

what was required to insure that there was no delay on an assembly line

and that quality control standards for the industry could be maintained.

In many cases, the ideal achievement level will have to be reduced

for reasons completely external to testing. For example, while it might

be considered important that elementary school students be able to spell

all of the words introduced to them in a block of instruction, previous

experience may have shown that, for many students, there is simply not

engugh time to learn all of the words. Under these conditions, the

ideal, in the sense of no measurement error, achievement level might be

that 70%, 80%, or 90% of the words needed to be spelled correctly. The

point is, an ideal achievement level must be defined as the desired

level of achievement assuming that there are no errors of measurement.

In the case of the MPFQC, the school decided, after considering the job

requirements and the practical constraints under which the training

operated, that if a trainee could hit the target 70% of the time that

would be an acceptable level of achievement.

The second facet of the problem is setting a criterion score on an

actual test with a finite, usually small, number of test items which

recognizes that errors of measurement do occur. Statistical models may

help in solving this problem. The second purpose of this study was to

consider how effective three statistical models were in suggesting cri-

terion scores that led to valid pass or fail decisions and how accur-

ately the models estimated examinee true scores.

j
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Three models were chosen for study. They share the binomial proba-

bility distribution for describing the expected distribution of observed

scores given an examinee's true ability. True abilities and estimates

of examinee true scores are on a scale from 0 to 1.0, where 0 implies

that the probability is 1.0 that the examinee will fail all test items

and where 1.0 implies that the probability is 1.0 that the examinee will

pass all test items. The models differ in the kinds of information

needed in addition to the binomial probability distribution to compute

a recommended criterion core and to compute estimated true scores.

The first model is being referred to as the proportion correct

model. The additional information required for setting a criterion score

is the subjective judgment of an evaluator, teacher, test designer or

other informed person or group of persons. Examinee true score estimates

follow directly from the observed performance. The model simply states

that the expected distribution of observed scores given a true ability,

which is defined as the probability of answering any test item correctly,

is the binomial distribution. A criterion score is chosen by consider-

ing the relative probabilities that examinees above and below the ideal

achievement level will obtain scores at least equal to candidate cri-

teria. The desired case is to find a criterion score for which the

probabilities are high that examinees at or above the ideal achievement

level will obtain at least that score, and for which the corresponding

probabilities for examinees below the ideal achievement level are small.

The probabilities for examinees below ideal achievement are interpreted

ad the probabilities of committing false positive decision errors. One

tmna* the probabilities for examinees at or above ideal achievement are

. -
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interpreted as the probabilities of committing false negative decision

errors. According to the proportion correct model, each examinee's true

score estimate equals the proportion of items on a test answered correct-

ly, or, for the MPFQC, the proportion of shots that hit the target.

The second model is the binomial error model. This model begins at

the same point as the proportion correct model. However, it differs in

the procedures for recommending criterion scores and estimating examinee

true abilities. The model shows that it is possible, on mathematical

grounds, to prove that the observed scores for a group of examinees are

linearly related to the true scores for those examinees, and that the

true scores are described by a beta distribution. The proof holds if

the observed score distribution for given ability is binomial and if the

observed score distribution across the group consisting of individuals

with a variety of abilities is negative hypergeometric. Since many ob-

served score distributions can be shown to fit one of the members of the

family of negative hypergeometric distributions, the model can be ap-

plied in many cases. In practice, one simply computes the necessary

parameters and applies the linear equation relating observed to true

scores to each observed score. The output of this procedure is a set of

true score estimates corresponding to the observed scores. The recom-

mended criterion score for any given test administration is the lowest

observed score corresponding to a true score estimate at or above the

ideal achievement level. The probabilities of false positive and false

negative decision errors are related to the distributions of errors of

estimation for each score. Each estimated true score can be interpre-

ted as the mean of a beta distribution of true scores. For each failing

_ _ ; .
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score, the portion of this distribution above the ideal achievement level

represents the probability that individuals with abilities above the

ideal achievement level were incorrectly failed, false negative decision

errors. The probabilities of false positive decision errors are equal to

the portions of the distributions for passing scores below the ideal

achievement level.

The third model is the Bayesian beta-binomial model. This model

assumes that a binomial distribution describes observed scores given

true abilities and that true abilities are distributed according to a

beta distribution. These are the same assumptions as those that under-

lie the binomial error model. However, rather than relating the true

score distribution to the observed score distribution directly, as the

binomial error model does, the true score distribution that is believed

to be the case is specified before data is collected and is incorporated

into the decision making process. This distribution is called a prior

distribution. The mathematics of the Bayesian model takes the beliefs

expressed by the prior distribution, modifies them on the basis of obser-

ved scores, and produces posterior distributions which describe the dis-

tributions of abilities corresponding to each observed score. The

choice of a criterion score and the true score estimates are based on

these posterior distributions. In practice, one finds the lowest obser-

ved score whose posterior distribution implies that the probability is

at least .5, or dome other value if the relative costs of false positive

and false negative errors differ, that an individual's ability equals or

exceeds the ideal achievement level, and chooses that score as the cri-

terim score. The means of the posterior distributions define the true

- y ., --
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score estimates corresponding to each observed score. For this study,

prior distributions were obtained by asking military police school

marksmanship instructors what they thought the observed score distribu-

tions would look like based on their experience.

The results of these analyses showed a remarkable degree of simil-

arity among the models. Recommended criterion scores were, for the most

part, in the 70% to 80% hit range. For some of the easy subtests, the

binomial error model recommended criterion scores lower than those of the

models, reflecting the apparently high ability levels demonstrated by the

high scores obtained on the easy subtests. Differences were also found

in the criterion scores recommended by the Bayesian model as a function

of the prior distribution used. When the prior distribution was based

on all eight MPFQC tables, the criterion scores were 70% to 75% hits.

When the prior distribution was based on the four hard MPFQC tables,

the criterion scores rose to 75% to 80% hits, reflecting the instruc-

tors' beliefs that trainees would not appear as proficient on the hard

tables as they would overall. The instructors' beliefs that the train-

ees would appear to be more proficient if only data from the four easy

MPFQC tables were considered, were reflected in the prior distribution

based on the easy tables. The criterion scores, in that case, were

70% hits. Despite the small differences among the models' criterion

scores, the overall impression of the results of these analyses, is

that it doesn't make much difference which model is used.

Regardless of which model is chosen, it is important to have some

feel for how good the decisions based on the criterion scores are. This

was explored by comparing the pass/fail decisions on the 10, 20, 40, and
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80 round subtests with the pass/fail decisions based on a criterion of

70% hits on all 240 rounds and on criteria of 70% hits on the hard and

easy 120 round tests. In addition, a baseline, empirical best, criterion

score was defined as that score which produced the least amount of mis-

classification error.

The comparison analyses were broken down by test length and test

difficulty. This was done to illustrate the effect of test length on

decision making accuracy and to determine whether tt was important to

match the subtests and the longer criterion tests with respect to the

difficulties of the HPFQC tables represented. The results of the compar-

isons were clear and consistent. When the difficulty of the subtests did

not match that of the criterion test, decision making error rates were

high, the false positive and false negative rates were very different

from one another, and the empirical best criterion scores were usually

not the same as the models' criterion scores. However, if subtests and

criterion tests were matched, the results were just the opposite. Deci-

sion making error rates were low and equally divided between false posi-

tive and false negative errors, and the empirical best criterion scores

were often recommended by at least one of the models.

Mismatches between subtests and criteria were the case when the hard

and easy subtests were compared to the 240 round criterion. Since rela-

tively low scores were obtained on the hard subtests, relatively few

false positive errors were observed, but false negative and total mis-

classification was high. Approximately 3% of all classifications were

false positives, 35% of all classifications were false negatives, and

38% of the classifications represented either a false positive or a

IrI
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false negative error. Scores on the easy subtests were relatively high.

This was reflected in high false positive rates, about 20% of all class-

ifications, and low false negative rates, about 3% of all classifications.

In order to compensate for the mismatches in difficulty, the empi-

rical best criterion scores were lower than those of the models in the

case of the hard subtests and higher than those of the models in the case

of the easy subtests. The misclassification error rates obtained with

the empirical best criterion scores ware typically more evenly divided

between false positive and false negative errors than for the models.

The results for the hard and easy subtests were also comparable. False

positive misclassifications occurred for about 13% of all classifica-

tions, about 5% of all classifications were false negatives, and about

18% of all classifications represented decision errors.

Examples of well matched subtests and criteria were the mix sub-

tests compared to the 240 round criterion, the hard subtests compared to

the 120 round hard criterion, and the easy subtests compared to the 120

round easy criterion. The results for these comparisons generally

showed minimal differences between the models and the empirical best

procedure, misclassification error rates were low, and false positive and

false negative errors were relatively equal. About 9% of all classifi-

cations represented false positive errors and 10% of all classifications

were false negative errors, yielding a 19% overall error rate when the

mix subtest classifications were compared to the 240 round criterion

classifications. The results obtained when the hard subtests were com-

pared to the 120 round hard criterion showed about 14% false positive

errors, 10% false negative errors, and 24% error overall. For the easy

subtests compared to the 120 round easy criterion, about 12 of all
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classifications were false positive errors, about 6% of all classifica-

tions were false negatives, and about 7% of all classifications repre-

sented decision errors.

.These results imply that regardless of the choice of statistical

model, a relatively large proportion of decisions represent incorrect

master/nonmaster classifications when a criterion-referenced test does

not match the skill domain, but that relatively accurate classification

can be obtained if the match is good. Unfortunately, these results do

not tell the complete story because they do not fully incorporate the

relative proportions of masters and nonmasters in the examinee group.

According to the 240 round criterion, about 26% of the examinees

were nonmasters and about 74% were masters. Therefore, the 3% false

positive rate observed with the hard subtests also implies that about

12% of the nonmasters were misclassified as masters. In the case of the

easy subtests, about 77% of the nonmasters were misclassified as masters.

The false negative rates, interpreted in this way, imply that about 46%

of the masters were incorrectly failed on the hard subtests, but that

only 3% of the masters were misclassified on the easy subtests. The mix

subtests' results imply that about 33% of the nonmasters were misclassi-

fied and that about 14% of the masters were misclassified.

According to the 120 round hard test criterion, about 63% of the

group consisted of nonmasters and 37% were masters. The implications

are that about 23% of the nonmasters were misclassified and about 26Z

of the masters were misclassified when the decisions based on the hard

subtsts are compared to the 120 round hard test criterion classifica-

tions. In the case of the 120 round easy test criterion, about 2% of

! ' --.
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the examinees were nonmasters and the other 98% were masters. Therefore,

about 38% of the nonmasters incorrectly passed the easy subtests but only

6% of the masters incorrectly failed. These results also show that a

good match between criterion-referenced tests and the criterion skill

domain produces more accurate classification than a poor match, but the

results are not as dramatic as those which consider only the relative

proportions of all classifications which are errors.

The primary reasons for using criterion-referenced tests are to

provide results which are interpretable in terms of what examinees can

and cannot do and to provide data for valid classification decisions.

The skills required by the MPFQC fulfill the first objective in that

there is no question that the test can be interpreted in terms of exam-

inee marksmanship ability. However, the results of the classification

analyses suggest that decision error is likely to be a source of pro-

blems, at least for tests with a reasonable number of items. Until pro-

cedures which are more effective than the statistical models considered

in this study are developed, it appears that the best solution is to be

aware of the factors which influence the accuracy of classification

decisions and to interpret test results with caution.

The two most important factors identified in this study are the

apparent difficulty of a criterion-referenced test relative to the dif-

ficulty of the skill being measured and the proportions of masters and

nonmasters in the examinee group. Users of criterion-referenced tests

should consider what they expect test results to look like so that if

unanticipated results do occur, they can be interpreted. For example,

imagine that the Military Police School decided to revise the HPFQC to

eliminate the four easy tables. Past experience with the original test

S. I
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probably suggested that most examinees were able to achieve qualifying

scores, but that extremely good scores were rare. With these expecta-

tions, the results of the hard subtest3 can be interpreted. The rela-

tively low average scores and large number of fail decisions should imply

that many of the decisions are false negative decisions, but that very

few nonmasters are passing. Given this interpretation, it may be desir-

able to lower the criterion score, with the understanding that such a

move would be likely to increase the number of false positive misclassi-

fications in return for decreasing the number of false negative misclassi-

fications. Predicting test results in advance can also be useful when

new tests are being field tested. Consider the use of a criterion-refer-

enced test for pre- and post-instruction testing. At the time of the

pre-test, the skill domain would be expected to represent difficult tasks

for the examinees and most of them would be expected to be nonmasters.

This situation is approximated by the MPFQC 120 round hard subdomain.

The results would be expected to show a low average score with relative-

ly few persons passing. At the time of the post-test, most examinees

should have mastered the skills and should find the test easy, a situa-

tion approximated by the MPFQC 120 round easy subdomain. In this case,

the average score should be high and few examinees should fail. If the

test results are very different from the expectations, then the validity

of the assumptions concerning the test items or the abilities of the

examinees must be considered. A pre-test that appears to be too easy

-my mean that the test items are poorly constructed and contain hints

or that the more difficult skills in the domain are not included or not

represented in sufficient numbers by the test items. In either case,

Vol
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the test should be revised. If the problem does not appear to lie in

the test items, the implication is that many of the examinees have al-

ready mastered the material. Unexpected results on the post-test may

imply problems in the test items, or, particularly if the pre-test re-

suits were reasonable, they probably imply that the instruction was not

as good as that desired.

While the solution to misclassification problems may not lie in the

statistical models included in this study, they can support the essenti-

ally intuitive analysis of expected and observed results discussed above.

This was investigated by comparing the observed misclassification errors

with the amount of misclassification predicted by the statistical proper-

ties of the models. The results of these analyses confirmed those of the

previous analyses. The differences between models are relatively small,

and one is much better off when tests are matched to their criterion

domains.

When decisions based on the hard subtests were compared to the 240

round test decisions, the models predicted, on the average, about two and

a half times as many false positive errors and about three times too few

false negative errors as were observed. The resulls for the easy sub-

tests compared to the 240 round test showed that the models' predictions

averaged about three times too few false positive errors and about two

and a half times too many false negative errors. In other words, when

the tests did not match the skill domain, the magnitudes of the error

rates were unpredictable. The directions of over and under estimation

were, however, what would be expected on intuitive grounds. Fewer false

positives and more false negatives were observed than were expected in

meo 1
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the case of the hard subtests, and more false positives and fever false

negatives were observed in the case of the easy subtests.

When the tests better matched their criteria, the theoretical re-

suits were much more similar to the observations. The models' average

predicted false positive misclassification rate was slightly less than

what was observed when the mix subtests' decisions were compared to the

240 round criterion decisions, and approximately one and a third times

too few false negative errors were predicted. The models predicted, on

the average, one and a third times too few false positive errors and one

and a quarter times too few false negative errors as were observed in the

case of the hard subtests compared to the 120 round hard criterion. The

very low error rates observed with the easy subtests compared to the 120

round easy criterion were not predicted as well as those for the other

examples of a close match between a test and its criterion. About three

times as many false positive errors were predicted as were observed and

about two times too few false negative errors were predicted.

The final criterion used to compare the statistical models was how

closely the true scores estimated by the models based on the subtest

scores approximated the 240 round and 120 round criterion true scores.

Since true score, as defined for this study, is directly interpretable

in terms of the probability that an examinee can display the skill being

measured, accurate true score estimation is highly desirable in a sta-

tistical model designed to support criterion-referenced testing. The

results paralleled those of the other analyses. There is little differ-

me between the models, but there is considerable difference in the

emlts obtained for subtests that do and do not match their criterion

MONIES.
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When the true scores estimated on the basis of the hard and easy

subtests were compared to the 240 round criterion true scores, errors in

the range of 15% to 20% were found. When the hard subtest true score

estimates were compared to the 120 round hard criterion true scores, the

error rates fell to between 10% and 15%. The results obtained when the

easy subtests' estimated true scores were compared to the 120 round easy

criterion true scores showed a drop in the error rate to between 5% and

10%. The other example of a close approximation between tests and cri-

terion, the mix subtests' results compared to the 240 round results,

also showed error rates in the 5% to 10% range.

Bias in predicting true scores was also much less when tests were

well matched to criteria. The 240 round criterion true scores were

grossly underestimated when the models were applied to the hard subtests'

results and overestimated with the easy subtests' results. There was

very little bias, however, in either direction when the true scores

estimated on the basis of the mix subtests' results were compared to the

240 round criterion true scores, when the hard subtests' true score esti-

mates were compared to the 120 round hard criterion true scores, or when

the easy subtests t true score estimates were compared to the 120 round

easy criterion true scores.
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6. SUHARY AND CONCLUSIONS

A criterion-referenced performance test of pistol marksmanship was

evaluated on logical and empirical grounds. The test scores, obtained by

military police trainees, were then used as a data base for comparing

three statistical models, the proportion correct model, the binomial

error model, and the Bayesian beta-binomial model, with respect to their

relative effectiveness as aids for making pass and fail decisions and

their relative accuracy in estimating examinee measurement error free

true scores. The results consistently led to the same conclusions.

There are few practical differences between the models in terms of the

amount of decision making error that is observed, the predictability of

the magnitude or direction of the decision error, or in the accuracy of

true score estimates based on observed test scores. The most important

consideration in evaluating criterion-referenced tests and in keeping

the amount of decision error to a minimum is how closely matched the test

items or tasks are to the skill domain they are intended to represent.

Evaluations of criterion-referenced tests should include analyses

intended to describe the skill domain, the rationale behind the choice

of test items or tasks, the purpose of the test, and the reason for the

level of skill chosen to represent adequate mastery of the domain.

Criterion-referenced tests which do not appear to adequately represent

the skill domain or which do not require sufficient performance to meet

the purpose of the test should be revised. Pilot test data can be
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analyzed using well known descriptive statistics or inferential techni-

ques such as means, variances, frequency distributions, KR-21 reliabl-

lities, and the analysis of variance, to empirically confirm or indicate

errors in the interpretation of a logical analysis of a criterion-refer-

enced test. In the case of the test evaluated as part of this study, for

example, the logical analysis indicated that the test fulfilled the re-

quirements for a well designed criterion-referenced performance test.

The empirical analysis, however, made it clear that an assumption that

the domain represented a unitary skill was questionable. In fact, the

empirical data indicated a two-dimensional domain and suggested that test

scores could be interpreted in terms of the overall domain or indepen-

dently for each of the two subdomains.

The comparisons of the statistical models indicated relatively few

differences between the models, and no evidence was found which would

indicate that one model should be considered either superior or inferior

to the others. The comparison data did, however, clearly demonstrate

the importance of a close match between test items and the domain to

which results are to be generalized. When test items did not match the

skill domain, the risk of incorrect classification decisions was high,

the magnitude of the decision errors was not accurately predicted by

statistical considerations, and the true abilities of examinees were

poorly estimated by the models. When the items more closely approxi-

mated the domain, the amount of classification error decreased, it was

more predictable, and true abilities were more accurately estimated.

The comparison data also illustrated the effect of the relative propor-

tions of masters and noirasters in the examinee group on the interpre-
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tation of isclassification error rates. For example, if the group con-

sists primarily of masters, a very low percentage of the classifications

are Likely to represent false positive errors. The low false positive

error rate may, however, obscure the fact that all or nearly all of the

nonmasters in the group are misclassified. Thus, decision makers must

consider the relative mix of the abilities of the examinees in interpre-

ting test results.

Decision errors will probably always be a problem when criterion-

referenced tests are administered. The results of this study suggest

that the most important action that can be taken to keep the magnitude

of decision error to a reasonable level is to insure that the test items

adequately represent the skill domain they are intended to measure. If

the match between the test items and the domain is good, then the sta-

tistical models considered in this study, along with subjective estimates

of the proportions of masters and nonmasters in the examinee group can

be used to estimate the types, amounts, and impact of misclassification

error on decision making. As far as whet the most reasonable practical

solution to the problem of setting criterion scores and making pass or

fail judgments is concerned, Dawes and Corrigan in their 1974 paper on

the use of linear models in decision making perhaps said it bist, "The

whole trick is to decide what variables to look at and then to know how

to add" (p.105).
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APPENDIX

Tables of Criterion Scores, Observed,

Expected, and Observed versus Expected

Misclassification Rates, and Squared

and Absolute Discrepancies Between

Estimated and Criterion True Scores
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